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Abstract

The present thesis discusses the modeling, propagation and scattering of fluid-

structure coupled waves through ducts or channels containing flexible components

that support structure-borne as well as fluid-borne vibrations. The boundary

value problems are governed by Helmholtz’s equation and have Dirichlet, Neu-

mann, Robin types and/or higher order boundary conditions. The mode-matching

(MM) scheme in connection with Galerkin formulation is applied to solve the gov-

erning boundary value problems. In MM technique, the solution is projected on

the eigenfunctions obtained from the eigenvalue problem associated with modeled

boundary value problems. The eigenvalue problems having rigid, soft or impedance

types of boundary conditions reveal orthogonal eigenfunctions, and the resulted

eigen-sub-systems undergo Sturm-Liouville (SL) category. However, the eigenvalue

problems achieved against the problems containing the elastic membrane or elas-

tic plate type boundaries reveal eigenfunctions that are non-orthogonal and satisfy

generalized orthogonality conditions, and the corresponding eigen-sub-systems un-

dergo non-SL category.

The main aim of current study is to model and analyze the effects of vertically

bridging elastic membranes and plates walls along with different edge conditions

on acoustic scattering in a flexible waveguide. The traditional MM approach that

is useful in modeling acoustically rigid, soft or impedance step-discontinuities fails

for the cases having flexible bridging height discontinuities. For such problems,

MM technique is applied in connection with three different approaches including

Galerkin approach, Model approach and tailored-Galerkin approach. In first ap-

proach, the orthogonal basis priori solutions are assumed to express the response

of bridging flexible components whose description varies by changing the edge

conditions. Further, for some sets of edge conditions the eigenvalues of associ-

ated eigen-system cannot be expressed explicitly, and must be found numerically

through some root finding algorithm. On the other hand, the Model approach

expresses the displacements of bridging flexible components in terms of a set of

non-orthogonal basis functions, which are already known and have non-zero deriva-

tives at edges. However, the key to the success of this approach is the satisfaction



x

of generalized orthogonal properties of eigenfunctions. This technique avoids the

need of additional root finding algorithm, but has higher computational cost due to

the slow convergence of generalized Fourier series. Besides, the tailored-Galerkin

approach incorporates the vibrational response of the bridging flexible compo-

nents having different sets of edge conditions in a simpler and computationally

more effective way. The displacements of vertical flexible components are defined

in such a way that their homogeneous parts involve the material properties of elas-

tic components, whereas, their integral parts link the cavity vibrations. Moreover,

a unique general description of the displacement of vertical elastic component can

deal a variety of edge conditions.

Different physical problems involving bridging flexible components and that can

have applications having applications in structural acoustics, elasticity, water wave

theory, aeroacoustics etc. are addressed in this thesis.
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υ Poisson’s ratio

Pi Power incident

Pr Power reflected

Pt Power transmitted

Pabs Power absorb

P cfluid Power through fluid
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E Young’s modulus



Chapter 1

General Introduction

1.1 Introduction

This thesis is dedicated to the study of the Acoustic waves scattering in a rect-

angular cavity containing flexible boundaries. In the present era acoustic, the

science of sound has become an interdisciplinary field. It embodies many disci-

plines such as physics, mathematics, mechanical engineering, speech and hearing

sciences. Acoustic is an interesting and challenging research area to engineers and

scientists [1–7].

The research interest in this field is motivated by the necessity to design objects

or channels useful in the reduction of structural vibrations and the associated

noises. Such noises are usually generated by the variety of mechanisms occurring

in systems of automobiles, turbofan engines, aero-engines, heating ventilation and

air-conditioning (HVAC) systems and other engineering designs [8–12].

The duct-like structure is a common component in all of these systems. Their key

objective is to distribute air flow from the buildings or exhausts to environment.

But, many times the waveguide acts as a conduit for a plethora of annoying sounds

to living and working environment. To reduce the noise level, the study of noise

reduction problems has received considerable attention of scientific community.

In engineering applications, noise is reduced by controlling through unsteady flow

1
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phenomena and vibrations of boundaries. The noise reduction techniques are clas-

sified into active noise control and passive noise control. In the first technique,

mitigation is achieved by noise cancellation (see, for instance, [13–16]). In passive

noise control, sound absorbing materials are used into the original system designs

to mitigate sound.

These physical problems are usually governed by Helmholtz or Laplace’s type

equation having rigid, soft or impedance type of boundaries. The mathematical

form of impedance boundary condition as given in [25] is

ρφt + Zn · ∇φ = 0, (1.1)

where n is unit normal vector directed into the surface, φ represents the field

potential, φt denotes the derivative of field potential with respect to time and, ρ

is the density of fluid. Here Z denotes the specific impedance of the bounding

surface, when Z →∞ the surface is acoustically rigid but if Z → 0 the surface is

soft. The acoustics scattering through different physical configuration containing

boundaries of the type (1.1) have been addressed by many authors, for instance,

see [26–29, 31, 33]. Note that the boundaries defined in (1.1) do not support

vibration along the surfaces. However, if the bounding surfaces are dynamical in

nature that support vibration such as elastic membranes or plates, the boundary

conditions involve second or higher order derivatives and are referred to as higher

order boundary conditions. The general form of higher order boundary condition

as given in [34] is

Lp
(
∂

∂x

)
∂φ

∂y
+Mp

(
∂

∂x

)
φ = 0, p ∈ {0, a}, y ∈ R. (1.2)

Here Lp
(
∂

∂x

)
and Mp

(
∂

∂x

)
are differential operators of the form

Lp
(
∂

∂x

)
=

Hp∑
h=0

cph
∂2h

∂x2h
and Mp

(
∂

∂x

)
=

Jp∑
j=0

dpj
∂2j

∂x2j
, (1.3)

where cph and dpj are constants and Hp and Jp are non-negative integers.
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The aforementioned form of higher order boundary conditions (1.2) is more general

and comprises particular forms as elastic membranes and plates type boundaries,

that have been used in literature by several authors in different physical situations

for instance see, [35–37].

1.2 Literature Overview

A fluid-structure coupled system composed of flexible walls and fluid space is

extensively found in structural acoustics, elasticity, water wave theory and aero-

acoustics, for instance see [38–45]. The physical insight of the interaction between

the surface vibrations and sound field of cavity, and the scattering phenomenon

are important to control the noise of aero-engines, heating, ventilation and air

conditioning (HVAC) system of buildings, and other engineering structures [104–

109, 111]. Recently. the rectangular panel cavity coupled systems have been

discussed in the context of active noise control measures. For instance, Pan and

Bies [110] studied acoustics of cavity-panel coupled system to investigate theoret-

ically the panel characteristics of the enclosure. Likewise, Kim and Brennan [55]

focused on the rectangular cavity comprising five rigid surfaces and a flexible plate,

and analyzed the acoustic attenuation of the enclosure in the presence of piston

source and/or point-force acoustic attenuator experimentally as well as theoreti-

cally. Ming and Pan [56] considered the acoustical enclosure, and discussed about

the interaction of inside sound and structural vibration to analyze the insertion loss

of enclosed cavity. More recently, Du et al. [57] investigated vibro-acoustic coupled

system of flexible panels and developed a generalized approach for the analysis of

three-dimensional model containing elastically restrained boundary conditions.

The aforementioned studies are mainly established on the basis of so-called modal

coupling theory [58], wherein the structure and fluid-borne modes are determined

from a priori solution, and then the system response is found through the evalu-

ation of the spatial coupling coefficients. However, this approach is inappropriate

for the cases involving strong coupling conditions, such as the system of thin flexi-

ble surfaces including various edge conditions or heavy material medium (water or
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oil). Moreover, the continuity conditions on coupling interface cannot be satisfied

with modal coupling theory, for more detail see [59, 60, 110]. On the other hand,

the analysis of fluid-structure coupled waves in non-planar ducts or channels is

challenging as well as important subject with a diverse range of applications in

structural acoustics, water wave theory, seismological waves through lyres of rocks,

and noise reduction problems etc. The motivation behind is the necessity to model

and understand the scattering behavior, in channels or guiding structures, with

the help of which the structural vibrations and related issues could be addressed.

In general, the analytical approaches are found useful in obtaining the solution of

the boundary value problems involving flexible components (higher order deriva-

tive involving boundary conditions) such as elastic membranes, plates or vibrating

elastic shells. A range of such physical situations can be modeled to the boundary

value problems (BVPs) that are solvable with the analytical methods like Wiener-

Hopf (WH) technique or variety of Fourier integral and/or Greens theorem-based

approaches, for instance see [83–90].

The physical problems of this category may comprise of variation in the material

properties of its boundaries (multi-part boundary conditions) but have geometri-

cally continuous structures. However, if the modeled configurations involve discon-

tinuities in their geometry, the use of classical WH technique is not appropriate.

Furthermore, such analytical techniques are not always easily generalized, see for

instance [115]. Huang [111] considered thin elastic membranes backed by slender

cavities to achieve the better performance of reactive device at low to medium

frequencies. He applied a Fourier transform based approach to analyze the fluid-

membrane coupled system. Warren at al [112] considered a rigid bridging height

discontinuity in an elastic membrane bounded waveguide, and analyzed the phys-

ical insight of the structure by using the mode-matching (MM) technique. Also,

for the continuous waveguide (without bridging height), they compared their MM

results with Wiener-Hopf (WH) approach. The MM approach followed in [112]

was different from classical approach, and involves the non-Strum-Louisville (SL)

systems. They applied generalized orthogonality conditions to match the pressure

and velocity fields at the interface. The characteristics of eigen-sub-systems of



5

fluid-membrane or fluid-plate coupled systems are different from the traditional

eigen-sub-systems, and are classified in [113]. The eigenfunctions are linearly de-

pendent, and the development and implication of generalized orthogonality con-

ditions is indispensable to ensure the point wise convergence eigen-sub-systems.

Subsequently, the physical problems comprising fluid-membrane/plate coupling

have been addressed by many authors via MM technique together with the gen-

eralized orthogonality conditions as suggested by Lawrie [113], see for instance

[114–119].

The mode-matching methods that are based on the matching of pressure and ve-

locity modes at some interface, have proved a viable tool to resolve the planar and

non-planar configurations [115–120]. This technique is conceptually simpler that

often yields a linear algebraic system to solve rather than the Fourier integrals

as obtained with the application of WH technique or Green’ function methods.

Nevertheless, the mode-matching technique (MMT) is only effective if the eigen-

functions form a set of orthogonal bases or the matrix of a linear algebraic system

is diagonally dominant. The eigen-sub-systems corresponding to the orthogonal

basis functions are classified as Strum-Liouville type. Lawrie in [113] showed that

if the BVPs are governed with Helmholtz or Laplace type of equation and com-

prise flexible boundaries (second or higher order derivative involving boundaries),

the eigenfunctions do not satisfy the usual orthogonal properties. In these cases,

the separation of variable method corresponds the eigenfunctions that satisfy the

generalized orthogonality relation and are linearly dependent. The orthogonality

relations are utilized in the process of implementation of matching conditions. The

application of the generalized orthogonality relations governs additional constants.

These constants are evaluated through the edge conditions which make the linear

combinations of the eigenvectors to be zero.

The advanced mode-matching method works well for the BVP containing hor-

izontal membranes or elastic plates and having rigid, soft or impedance typed

conditions at interface. But if the physical problem involves vertical higher order

boundaries such as bridging elastic membrane or plate, this procedure fails. Re-

cently, Lawrie and Afzal [120] have applied mode-matching technique (MMT) in
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connection with the Galerkin and tailored-Galerkin methods to discuss the scatter-

ing effects of fluid-structure coupled waves of bridging membrane. Their adopted

Galerkin scheme is based upon the assumptions of appropriate basis functions,

which may vary with the variation of conditions on the physical problem. Fur-

ther, for some conditions the eigenvalues cannot achieved explicitly and must be

obtained numerically through some root finding algorithm. This approach is very

well established and has been extensively applied in literature, see for instance [98–

100]. The main disadvantage of first technique is the assumption of appropriate

orthogonal basis that changes with the variation of edge conditions on the bridging

height. On the other hand, the second approach contains a unique description for

all set of edge conditions but has high computational cost. The reason behind the

computational cost is the slow convergence rate of sums which appear with the

imposition of edge conditions and that depend upon the non-orthogonal modes of

semi-infinite region.

Moreover, the aforementioned problems can be analyzed physically by using the

Low Frequency Approximation (LFA). This approach is well known, see for exam-

ple [114] and [101, 102], especially in low frequency regime, wherein the contribu-

tions from the fundamental and/or next mode are significant. This approximation

relies on the limited number of modes whose selection is subjected to the number

of physical conditions. The scheme is not useful on higher frequencies and/or in

the cases whereby the information about the higher modes is required.

1.3 Objective and Physical Problems

The present dissertation addresses problems including the modeling of fluid-structure

coupled waves through the elastic structures bounding fluid space and their scat-

tering from geometric and material discontinuities.

The subject is challenging as well as interesting, and have gained much attention

of engineers and scholars. The envisaged problems are mathematically complex

that contain non-Strum-Louisville systems, flexible bridging heights along with dif-

ferent edge conditions and multiple interface conditions. Further, these problems
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include different bridging flexible height discontinuities instead of a bridging mem-

brane or rigid height as assumed by Lawrie and Afzal [119]. In the present thesis,

a class of such problems with ongoing and some new forms of mode-matching tech-

niques including Galerkin, tailored-Galerkin and modal approaches to encounter

the vibrational response of bridging flexible height, are addressed. Further, the

low frequency approximation for certain cases to compare the results in low fre-

quency regime is developed. Following physical problems are addressed in this

dissertation:

1. 1. Acoustic scattering through a membrane bounded cavity comprising

acoustically rigid extended inlet and outlet. The problem is solved through

the extended form of mode-matching technique.

2. 2. Analysis of fluid-structure coupled wave scattering from a bridging-

membrane junction by using a tailored-Galerkin approach, and its compari-

son in low frequency regime with low frequency approximation.

3. 3. Silencing performance of a membrane cavity connected with elastic plates

bounded inlet and outlets with different edge conditions.

4. 4. The modeling of fluid-structure coupled response of the elastic struc-

tures bounding fluid space and their scattering from geometric and material

discontinuities.

1.4 Outline of the Thesis

The dissertation outlines are as follows.

Chapter 2: This chapter introduces some preliminaries concepts and defini-

tions that are useful in understanding the work presented in rest of the chapters.
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Chapter 3: In this chapter scattering of fluid-structure coupled waves in a

wave-bearing cavity is discussed. The cavity consists of horizontal as well as ver-

tical elastic boundaries and filled with a compressible fluid. To incorporate the vi-

brational response of the vertical elastic boundaries with different edge conditions,

the mode-matching technique is extended by tailored-Galerkin and Galerkin pro-

cedures. It is found that in mode-matching tailored-Galerkin (MMTG) method,

a unique general description of the displacement of vertical elastic component can

deal a variety of edge conditions. Whereas, the mode-matching Galerkin (MMG)

technique relies upon the orthogonal basis a priori whose description varies by

changing the edge conditions of vertical elastic components. Accordingly, for

spring-like conditions the eigenvalues cannot be expressed explicitly and must

be found numerically. The eigen modes of the cavity region satisfy the general-

ized orthogonal conditions which ensure the point-wise convergence of MMTG and

MMG approaches.

Moreover, the truncated MMTG and MMG solutions reconstruct the matching

conditions as well as satisfy the conserved power identity. It confirms the accu-

racy of performed algebra and retained solutions. From the numerical results it is

found that by varying the conditions on the edges of bridging elastic components,

the stop-bands can be enhanced and shifted as well as broadened over the certain

frequency regimes. The contents of this chapter are published in Mathematics and

Mechanics of Solids journal.

Chapter 4: This chapter discusses the reflection and transmission of fluid-

structure coupled waves through a membrane bounded cavity. The vertical walls

of the cavity at the junctions are assumed to be the rigid plates or the elastic

membranes. The problem with rigid vertical plates is amenable by following the

traditional Mode-Matching technique (MMT). However, if the rigid vertical plates

at junctions are replaced with elastic membranes, the standard mode-matching

procedure fails. Alternatively, the mode-matching tailored-Galerkin (MMTG) ap-

proach is developed. In this approach, the Galerkin technique to express the

displacements of the bridging membranes is adopted. The method chosen herein
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provides a unique description of displacements to cater a verity of edge condi-

tions on the joints of vertical membranes. The Low frequency approximation

(LFA) which valid only in low frequency regime, for the rigid plates and mem-

brane heights is formulated and compared. To analyze the scattering behavior,

two types of incidents forcing; structure-born mode and fluid-born mode are as-

sumed. It is found that the material properties of vertical surfaces of the cavity at

junctions as well as the selection of edge conditions in case of vertical membranes

significantly affect the scattering powers and the transmission loss. The contents

of this chapter are published in Wave in Random and Complex Media.

Chapter 5: This chapter discusses the application of Galerkin and tailored-

Galerkin procedures to model the vibrational response of a membrane bounded

cavity connected to the elastic plates with different types of edge conditions. The

plates contain clamped or pin-jointed type of edge conditions on finite edges, whilst

the membranes are assumed to contain fixed, free or spring-like edge conditions.

Both Galerkin and tailored-Galerkin techniques require the priori solutions to de-

termine the displacements of bridging membranes. In the first approach, the priori

solution is expressed in terms of Fourier series which changes by varying the condi-

tions on the edges of membranes. However, in late approach, a unique description

of displacements can address a variety of edge conditions. The accuracy of these

approaches is confirmed through the satisfaction of conserved power identity and

through the reconstruction of matching condition with the truncated form of the

solutions. In the modeled configuration, the vibrational energy propagates along

the walls as well as through the fluid, and is affected by the variation of edge

conditions. Moreover, the role of edge conditions is significant for structure-borne

radiation only and is negligible for fluid-borne radiations. The contents of this

chapter are submitted in Vibration and Control journal for possible publication.

Chapter 6: This chapter investigates the traveling waveform in a flexible

waveguide bounded by elastic plates containing a wave-bearing expansion chamber

with clamped or pin-jointed connections at the junctions, whereby the bridging
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elastic plates are introduced to connect the inlet/outlet to the expansion chamber.

The bridging elastic plates may comprise a variety of the edge conditions on the

joints such as clamped, pin-jointed or pivoted. The configuration is exited with

the structure as well as fluid-born mode to analyze the influence of the imposed

edge conditions and interface conditions on attenuation. To model the response of

bridging elastic plates a comparison analytical/semi-analytical technique is given.

These techniques are mainly based upon the mode-matching procedure in con-

nection with Galerkin concept with variation of priori assumptions. These priori

solutions can be orthogonal as well non-orthogonal bases functions. The contents

of this chapter are submitted in Journal of Acoustical Society of America journal

for possible publication. Finally, a brief summary, concluding remarks and future

work are presented in Chapter-7.



Chapter 2

Preliminaries

This chapter depicts the fundamental concepts that are relevant to understand

the propagation and scattering of acoustic wave in waveguides containing flexi-

ble boundaries with different set of edge conditions. The acoustic problems are

governed with linear acoustic wave equation and different types of boundary con-

ditions. The boundary conditions are considered to be: rigid, elastic membrane

and elastic plate. The physical problems are governed by Helmholtz’s or Laplace

equation and having boundary conditions rigid, soft or impedance type underlie

SL category, thereby the appearing eigenfunctions are linearly independent and

satisfy the standard orthogonality conditions (for more details, see for instance

[125, 126]. The orthogonality conditions help to recast the differential system to

linear algebraic system during the matching analysis which is discussed in on-

going chapters of the thesis. On the other hand if the problem is governed by

Helmholtz’s or Laplace equation and involve higher order boundary conditions

such as membrane or plate, the governing eigenfunctions do not satisfy standard

orthogonality conditions, and thus the generalized orthogonality conditions are

discussed. In more general form the development of such orthogonality conditions

is explained in [113]. The associated eigenfunctions are linearly dependent and

satisfy the generalized orthogonality conditions. The detail of these conditions

are explained in this chapter. This chapter is organized in the following manners

as: Section 2.1 is dedicated to the mathematical derivation of the acoustic wave

11
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equations. Non-dimensional settings are illustrated in Section 2.3. The different

types of boundary conditions are presented in Section 2.2. and the travelling wave

formulation is presented in Section 2.4. The generalized orthogonality relations for

flexible boundaries such as elastic plate and membrane are derived in section 2.5.

The Mode-Matching technique, Low-Frequency Approximation, energy fluxes and

transmission loss are explained in Section 2.6, Section 2.7, Section 2.8 and Section

2.9, respectively.

2.1 Linear Acoustic Equation

The linear acoustic wave equation defines the propagation of pressure fluctuation

in the fluid medium. The mathematical formulation of the acoustic wave equation

in a fluid can be obtained with following assumptions [127].

• The fluid is stationary.

• Fluid is compressible.

• The fluid flows under adiabatic conditions.

Conservation of mass: The fluid mass is conserved and that can be found

through continuity equation.

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

where ρ is the mass density and v be the velocity of moving mass.

Conservation of momentum: The linear momentum is conserved and can be

obtained as

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p, (2.2)

where p represent the fluid pressure. The quantities ρ, v0 and p have constant

values when fluid is stationary such that ρ = ρ0, v = 0 and p = p0. For acous-

tic propagation we assume small perturbation in the fluid and write the linear
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approximation of the quantities ρ, v and p as

ρ = ρ0 + ρ′ + . . . ,

v = v′ + . . .

p = p0 + p′ + . . . . (2.3)

where the higher order product of fluctuation are neglected, linearized (2.1)-(2.2)

with the aid of (2.3), differentiating partially the obtained equation of continuity

with respect to t and taking gradient of linearized momentum equation then on

subtraction, it is found as

∂2ρ′

∂t2
−∇2p′ = 0. (2.4)

Assuming the barotropic flow i.e., the flow in which pressure is function of density

alone p = p(ρ) and using the Taylor’s series expansion, it is obtained as

p′ =
∂p

∂ρ
(ρ0)p′ (2.5)

where, c2 = ∂p
∂ρ

(ρ0) is taken to be as speed of sound, substituting (2.5) into (2.4),

we obtained
1

c2

∂2p′

∂t2
−∇2p′ = 0. (2.6)

The equation (2.6) is known as acoustic wave equation in term of pressure. Through-

out this dissertation we are looking for steady harmonic solutions. It is useful to

develop the wave, membrane and elastic plates equations in the above mentioned

form.

For this purpose we assume that p′(x, y, t) = p(x, y)e−iωt and V ′(x, y, t)e−iωt, where

ω is the radian frequency, using the above substitution in the wave equation (2.6),

we obtained (
∂2

∂x2
+

∂2

∂y2
+ k2

)
p = 0. (2.7)

The equation (2.7) is known as Helmholtz’s equation, it is useful to express pressure

in form of field potential Ψ(x, y, t) = ψ(x, y)e−iωt, where
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p = −ρ0
∂Ψ

∂t
and v = ∇Ψ (2.8)

Substituting (2.8) into (2.7), we get

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
ψ = 0, (2.9)

the equation (2.9) is known as Helmholtz’s equation in the form of field potential.

2.2 Boundary Conditions

The boundary conditions play an important role in determining the mathematical

solutions of physical problems. The nature and types of boundary conditions de-

pend on the conditions assumed while modeling the physical problems. In acoustic,

“reaction of the surface to sound” can be expressed in terms of boundary conditions

and that describes the behavior of sound in the neighborhood of a bounding sur-

face. The present study describes acoustic analysis of waveguides having different

geometrical and bounding characteristics. Following types of boundary conditions

are considered.

2.2.1 Rigid Boundary Condition:

In acoustic if a boundary Ω do not support support vibration is known as rigid

boundary. The given surface is acoustically rigid if Z →∞, and that reveals from

(2.6), that can be written as

n̂.v = 0 on Ω (2.10)

where n̂ is out ward drawn normal to boundary Ω. The rigid boundary condi-

tions (2.15) in the form of field potential using harmonic time dependence can be

expressed as
∂ψ

∂y
= 0, (2.11)
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where ψ is harmonic time dependence field potential.

2.2.2 Flexible Boundary Condition

In acoustic if a boundary Ω support vibrations along the surface, the boundary

is known as flexible boundary. In this dissertation, we have considered elastic

membrane and elastic plate boundaries both of these support vibrations. Also the

membrane and plates walls are considered horizontal and vertical direction

• Membrane Boundary

To formulate the elastic membrane condition it is assumed that the tensile stress is

same at every point on the membrane and at every orientation of the line element

perpendicular to the membrane surface. Such membranes are deformable like a

sheet of rubber and that contain wave behavior similar to the waves on assemblage

of flexible strings. Therefore, the tensile stress of the membrane can be referred

as tension (T ), and the wave equation for membrane can be found in many text,

for instance [127]. For membrane condition coupled with compressible fluid, the

dimensional displacement W (x, y, t) satisfies the equation of motion.

∂2W

∂ζ2
− 1

c2
m

∂2W

∂t2
=

1

T
[p]+−, (2.12)

where ζ is either replaced by variable x or y, if ζ = x then (2.12) represent the

horizontal elastic membrane boundary, whereas in case when ζ = y the equation

(2.12) denotes the vertical elastic membrane boundary. Also here cm =
√
T/ρm

specifies the sound’s speed on membrane having mass density ρm. The quantity

[p]+− = [p]+ − [p]− on the right hand side of the (2.12) denotes the fluid pressure

difference across the membrane surface. Using the harmonic time dependence

as addressed in section 2.1 the harmonic time dependent membrane boundary

conditions in the form of field potential can be expressed as

[
∂2

∂x2
+
ω2

c2
m

]
∂ψ

∂y
=
ω2ρ0

T
[ψ]+− , (2.13)
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where cm is speed of sound on membrane boundary and T denotes the membrane

tension. The quantities ρ0 represents the density of membrane.

• Elastic Plate Boundary

A plate is a solid body bounded by two surfaces. The distance between the two

surfaces defines the thickness of the plate, which is assumed to be small compared

to the lateral dimensions, such as the length and width in the case of a rectangular

plate and the diameter in the case of a circular plate. The vibration of plates play

an important role in the study of structural acoustic. The theory of elastic plates

is an approximation of the three-dimensional elasticity theory to two dimensions,

and that permits a description of the deformation in the plate along the mid plane

of the plate. Moreover, it is assumed that Young’s modulus, Poisson ratio and area

density vary across the plate in one direction. The governing equation of the plate

in the form of dimensional plate displacement W1 (ζ, t) coupled with compressible

fluid is expressed below while the details pertaining to the derivation of the plate

equation is given in [124].

∂4W1

∂ζ4
+

2B
′
(ζ)

B(ζ)

∂3W1

∂ζ3
+
B

′′
(ζ)

B(ζ)

∂2W1

∂ζ2
+

ρp
B(ζ)

∂2W1

∂t2
= −[p]+−, (2.14)

where ρp is the mass density of the plate, [p]+− is the fluid pressure difference across

the plate and B is the bending stiffness. For constant bending stiffness and area

density, (2.14) leads to

∂4W1

∂ζ4
+

ρp
B(ζ)

∂2W1

∂t2
= −[p]+−. (2.15)

Here,in above equations the quantity ζ is either x or y, ζ = x is horizontal elastic

plate boundary and ζ = y represents vertical elastic plate boundary. The elastic

plate boundary condition in the form of field potential with the aid of harmonic

time dependence can be written as

[
∂4

∂x4
+
ρpω

2

B(x)

]
∂ψ

∂y
=
ω2ρ0

B(x)
ψ, (2.16)
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where the quantities ρp and B represents the density and the bending stiffness of

elastic plate that is express as B = Eh3/12(1− ν2), in which E and ν are Young’s

modulus and Poisson’s ratio respectively.

2.3 Non-Dimensional Setting

The governing Helmholtz equation and the boundary conditions such as rigid,

membrane and elastic plates in dimensional setting can be expressed as

(
∂2

∂x̄2
+

∂2

∂ȳ2
+ k2)Ψ̄ = 0, (2.17)

[
∂2

∂x̄2
+
ω2

c2
m

]
∂Ψ̄

∂ȳ
=
ω2ρ0

T

[
Ψ̄
]+
− , (2.18)

and [
∂4

∂x̄4
+
ρpω

2

B(x̄)

]
∂Ψ̄

∂ȳ
=
ω2ρ0

B(x̄)
Ψ̄ (2.19)

respectively. With the non-dimensional setting, the equations and boundary con-

ditions of the boundary value problems are appeared in dimensionless form, where

all mathematical laws and rules are easily applicable.

Thus, for making the physical quantities dimensionless in the mathematical mod-

eling of the physical problems, the dimensionless settings, with respect to the

typical scale k−1 (length scale) and ω−1 (time scale), are framed in the following

way

x = kx̄, y = kȳ and t = ωt̄. (2.20)

On using the above transformation, we have

∂2

∂x̄2
= k2 ∂

2

∂x2
,

∂2

∂ȳ2
= k2 ∂

2

∂y2
and Ψ̄(x̄, ȳ) =

ω2

k2
ψ(x, y). (2.21)

By using non-dimensional settings, Helmholtz’s equation (2.17) can be expressed

in dimensionless (
∇2 + 1

)
ψ(x, y) = 0. (2.22)
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Any solution of this equation has to comply with the acoustical properties of the

boundary. Similarly, the non-dimensionalized form of the rigid, elastic membrane

and elastic plate boundaries can be obtained from (2.20)-(2.21) as under

∂ψ

∂y
= 0 (2.23)

[
∂2

∂x2
+ µ2

]
∂ψ

∂y
= α

[
ψ̄
]+
− , (2.24)

and [
∂4

∂x4
− µ1

]
∂ψ

∂y
= α1ψ

− (2.25)

respectively. Where, the parameters α, α1, µ and µ1 represent the fluid loading

parameter and the in vacuo wavenumber for both membrane and plate respectively,

here µ = c/cm and α = c2ρ0/(kT ) are the expressions for the elastic membrane

parameters. The value of the elastic plates parameters µ1 and α1 can be expressed

as under

µ1 = 4

√
c2hρp
Bk2

α1 =
c2ρ

Bk3
. (2.26)

2.4 Travelling Wave Formulation

The solution of non-dimensional Helmholtz’s equation (2.22) by separation of vari-

able method is known as travelling wave solution that can be expressed as

ψ(x, y) =
∞∑
n=0

BnYn(y)e±iνnx, (2.27)

where Yn(y);n = 0, 1, 2... denote the eigenfunction expansions, Bn are the ampli-

tudes of that nth mode and νn is the wavenumber of nth propagating mode.
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2.5 Orthogonality Relations

The physical problems considered in this thesis are solved by the matching tech-

niques. These techniques rely on the formulation of field potentials in terms of

eigenfunction expansions and then utilizing the orthogonal characteristics under-

lying eigen subsystems.

The eigenfunctions of the problems governed with Helmholtz’s equation and having

conditions to be Dirichlet, Neumann or Robin’s types undergoes Strum-Lioullie

(SL) category and satisfy usual orthogonality conditions.

However, if the problem governed by Helmholtz’s equation and comprises higher

order boundary conditions the eigen system is of non- Strum-Lioullie type and

satisfies generalized orthogonality conditions. To determine the form of generalize

orthogonality relation used in this thesis we assume the eigenfunction ansatz (2.27)

2.5.1 Orthogonality Relation for Membrane

For a duct bounded between walls, with rigid condition at y = a and having

membrane boundary conditions at y = b the eigen subsystem can be found as

Y
′′

n (y)− s2
nYn(y) = 0, (2.28)

Y
′

n(a) = 0, (2.29)

(s2
n + 1− µ2)Y

′

n(b)− αYn(b) = 0, (2.30)

To established the generalized orthogonality relation for underlying eigen system

we multiplying (2.28) by Ym(y) and integrating from a to b gives:

∫ b

a

Yn(y)Y
′′

n (y)dy = s2
n

∫ b

a

Yn(y)Ym(y)dy, (2.31)

after integrating left hand side of (2.31) using by parts rule, we obtain
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∫ b

a

Y
′′

n (y)Ym(y)dy =
[
Y

′

n(y)Ym(y)
]
−
[
Yn(y)Y

′

m(y)
]

+

∫ b

a

Y
′′

m(y)Yn(y)dy

= Ym(b)Y
′

n(b)− Y ′

m(b)Yn(b) +

∫ b

a

Y
′′

m(y)Yn(y)dy

=
Y

′
n(b)Y

′
m(b)

α

(
s2
m − s2

n

)
+ s2

m

∫ b

a

Yn(y)Ym(y)dy. (2.32)

Substituting (2.32) into (2.31) gives:

(s2
n − s2

m)Y
′

n(b)Y
′

m(b) + α(s2
n − s2

m)

∫ b

a

Yn(y)Ym(y)dy = 0 (2.33)

If m 6= n then the above equation implies that

Y
′

n(b)Y
′

m(b) + α

∫ b

a

Yn(y)Ym(y)dy = 0 (2.34)

Consequently, if m = n then (2.33) yields

En = [Y
′

n(′)]2 + α

∫ b

a

Y 2
n (y)dy. (2.35)

On combining (2.34) and (2.35), we have

Y
′

n(b)Y
′

m(b) + α

∫ b

a

Yn(y)Ym(y)dy = δmnEn, (2.36)

Hence, the property (2.35) and (2.36) is concluded to generalized orthogonality

relation for the flexible waveguide bounded by membrane.

2.5.2 Orthogonality Relation for Elastic Plate

In this section, we consider a flexible waveguide model that is bounded above by an

elastic plate and bounded below by a rigid wall. The model problem is governed by

Helmholtz’s equation (2.22) together with boundary conditions (2.23) and (2.25)

which yields
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Y
′′

n (y)− s2
nYn(y) = 0, (2.37)

Y
′

n(a) = 0, (2.38)

{(s2
n + 1)2 − µ4

1}Y
′

n(b)− α1Yn(b) = 0. (2.39)

To develop the generalized orthogonality relation for plate bounded duct we pro-

ceed as. On multiplying (2.37) with Ym(y), we get

∫ b

a

Yn(y)Y
′′

n (y)dy = s2
n

∫ b

a

Yn(y)Ym(y)dy, (2.40)

after integrating by parts the left hand side of of (2.40), we find

∫ b

a

Y
′′

n (y)Ym(y)dy =
[
Y

′

n(y)Ym(y)
]
−
[
Yn(y)Y

′

m(y)
]

+

∫ b

a

Y
′′

m(y)Yn(y)dy

= Ym(b)Y
′

n(b)− Y ′

m(b)Yn(b) +

∫ b

a

Y
′′

m(y)Yn(y)dy

=
Y

′
n(b)Y

′
m(b)

α

(
s2
m − s2

n

)
+ s2

m

∫ b

a

Yn(y)Ym(y)dy. (2.41)

Substituting (2.32) into (2.31) gives:

(s2
n − s2

m)Y
′

n(b)Y
′

m(b) + α(s2
n − s2

m)

∫ b

a

Yn(y)Ym(y)dy = 0 (2.42)

If m 6= n then the above equation implies that

Y
′

n(b)Y
′

m(b) + α

∫ b

a

Yn(y)Ym(y)dy = 0 (2.43)

Consequently, if m = n then (2.33) yields

En = [Y
′

n(′)]2 + α

∫ b

a

Y 2
n (y)dy. (2.44)

On combining (2.43) and (2.44), we have

Y
′

n(b)Y
′

m(b) + α

∫ b

a

Yn(y)Ym(y)dy = δmnEn, (2.45)
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Hence, the property (2.44) and (2.45) is concluded to generalized orthogonality

relation for the flexible waveguide bounded by elastic plate.

2.5.3 Properties of Eigenfunctions for Elastic Membrane

The eigen system in case of flexible membrane has well recognized properties [45]

that are explained as

• The eigenfunctions Yn(y), n = 0, 1, 2, 3..., for flexible duct bounded by mem-

brane are linearly dependent that satisfy

∞∑
n=0

Y
′
n(b)Yn(y)

En
= 0, a ≤ y ≤ b. (2.46)

It is important to note that the number of linearly dependent sum is taken

half of the order of the membrane partial differential equation.

• The eigenfunctions also satisfy the identities for membrane bounded duct,

that is
∞∑
n=0

[Y
′
n(b)]2

En
= 1. (2.47)

2.5.4 Properties of Eigenfunctions for Elastic Plate

The eigenfunctions Yj(%q, y), j = 1, 2 are linearly dependent and their properties

are mentioned below [45]

∞∑
q=0

∆jqYj(%q, y) =
∞∑
q=0

%2
q∆jYj(%q, y) = 0, 0 ≤ y ≤ u (2.48)

and
∞∑
q=0

∆2
jqκq = 0,

∞∑
q=0

%2
q∆

2
jqκq = 1, 0 ≤ y ≤ u, (2.49)

where

∆jq =
Y

′
j (%q, u)

κq
. (2.50)
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The Green’s function for the eigenfunctions can be constructed as [45]

α1

∞∑
q=0

Yjq(%q, υ)Yjq(%q, y)

κq
= δ(y−υ)+δ(y+υ)+δ(y+υ−2u), −u ≤ υ, y ≤ u,

(2.51)

where δ(y) is the usual Dirac delta function and this result shows that the eigen-

function expansion representation of a suitably smooth function, say f(y), con-

verges point-wise to that functions. In order to obtain the solution of acoustic

scattering problems in ducts or channels, Mode-Matching technique is presented

in next section.

2.6 Mode Matching Technique

Modal representation is generally opt to obtain the solution of acoustic waveguide

problems. A single modal representation is only possible in segments of a duct with

constant properties (diameter, wall impedance). When two segments of different

properties are connected to each other, a modal representation can be used in each

segment, but since the modes are different we have to reformulate the expansion

of the incident field into an expansion of the transmitted field in the neighboring

segment, using conditions of continuity of pressure and velocity.

This is called: “MM”. Furthermore, these continuity conditions cannot be satisfied

with a transmission field only, and a part of the incident field is reflected. Each

mode is scattered into a modal spectrum of transmitted and reflected modes.

The first step in the MM method entails the eigenfunction expansion of unknown

fields in the individual duct-regions in terms of their respective modes. Since the

functional form of the modes is known, the problem reduces to that of obtaining

modal amplitudes related with the field expansions in different duct-regions of

waveguide. The modal representation is followed by the implementation of the

continuity conditions for the fields at the interfaces in the junction regions. This

method, in conjunction with the standard or generalized orthogonality relations of

the modes, eventually leads to an infinite system of linear simultaneous equations
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for the unknown modal amplitudes. For further details on MM, we refer to [20].

In next section, we discuss the Low-Frequency Approximation technique.

2.7 Low Frequency Approximation

The low frequency approximation (LFA) is found useful but valid only in low

frequency regime. In this technique, we consider only a finite number of modes

and the resulting finite systems can be solved simultaneously through inversion.

The complete methodology of this method is presented in Chapters 4, 5 and 6.

2.8 Energy Flux

The energy flux or power (P ) provides the understanding about the physical aspect

of scattering as well as a check on the accuracy of obtained solution. The formula

to obtain energy flux through fluid medium is given in [38] as

P cfluid = Re

{
i

∫ b

a

ψ

(
∂ψ

∂x

)∗
dy

}
, (2.52)

where superposed asterisk (∗) specifies for complex conjugate. Accordingly, the

mathematical form of energy flux propagating via elastic membrane and plate are

given by

P cmemb = Re

{
i

α

(
∂ψ

∂y

)(
∂2ψ

∂x∂y

)∗}
(2.53)

and

P cplate = Re

{
i

α1

[(
∂2ψ

∂x∂y

)(
∂3ψ

∂x2∂y

)∗
−
(
∂ψ

∂y

)(
∂4ψ

∂3x∂y

)∗ ]}
, (2.54)

respectively. Note that by using (2.52)-(2.54), we may construct a conserve power

identity based upon the law of conservation of energy and that may serve as a

physical check on the accuracy of truncated solution. As well, the accuracy of the
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silencer or waveguide are measured by transmission-loss (TL) that is expressed

mathematically in next section.

2.9 Transmission Loss

The performance of any acoustic waveguide is generally testified with the opt of

transmission-loss [113], that is

TL = −10 log10

(
Pt
Pi

)
, (2.55)

where, Pt stands for power transmitted, whilst Pi is for incident power through

fluid.



Chapter 3

On the Extension of Mode

Matching Procedure for Modeling

a Wave-bearing Cavity

3.1 Introduction

The problem of rectangular wave-bearing cavity is presented in this chapter. The

study describes a versatile form of tailored-Galerkin approach along with MM

method to analyze the acoustic scattering through the rectangular flexible cavity

containing different conditions on joints in rigid channel, with simpler and com-

putationally more effective way. The cavity is composed of one finite flexible wall

along x- direction and two finite flexible strips along the y-direction. The ana-

lytical expression depending upon the eigenvalues/eigenfunctions incorporates the

fluid-structure interaction between the horizontal flexible component and inside

fluid. However, to encounter the vibrational response of vertical flexible compo-

nents, the tailored-Galerkin process is introduced. The displacements of vertical

flexible components are defined in such a way that their homogeneous parts in-

volve the material properties of elastic components, whilst their integral parts link

the cavity vibrations. On the other hand, the Galerkin approach relies upon a

26
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priori solution along vertical elastic components, that is chosen herein to be the

orthogonal basis eigenfunctions. Both Galerkin and tailored-Galerkin solutions

are obtained for the silencer containing wave-bearing cavity and rigid inlet/outlet.

This chapter is arranged in following sections.

The problem formulation is described in Section 1. The mode-matching solution

accompanying with Galerkin and tailored-Galerkin approaches has been discussed

in Sections 2 and 3. Numerical results and discussion on results are presented in

Section 4. Finally, the concluding remarks are specified in Section 5.

3.2 Problem Formulation

A two-dimensional waveguide containing a wave-bearing chamber cavity and rigid

extended inlet and outlet is assumed. The inside of the waveguide is filled with

compressible fluid having mass density ρ and sound speed c. The physical configu-

ration of the waveguide is shown in Fig. 3.1. In dimensional setting of coordinates

I-L, 0M

y

x

a

b

IL, 0M

Inlet

Membrane

Outlet

Expansion

Chamber

Figure 3.1: The physical configuration of waveguide.
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the rigid surfaces are situated at ȳ = 0̄ and ȳ = ā, whereas, the elastic membrane

located at ȳ = b̄, |x̄| < L̄ is connected from its ends to vertical membranes lying

along x̄ = ±L̄, ā ≤ ȳ ≤ b̄. The other ends of the vertical membranes are connected

to rigid horizontal surfaces at (x̄, ȳ) = (±L̄, ā). Note that overbars with variables

here and henceforth denote the dimensional setting of coordinates.

The waveguide is radiated with the fundamental duct mode of extended inlet

x̄ < L̄ and the response is observed in the term of fluid potential Φ̄(x̄, ȳ, t̄). The

harmonic time dependence exp(−iωt̄), where ω = ck is radial frequency in which

k is wavenumber, is suppressed throughout, and the boundary value problem is

non-dimensionalized with respect to the length scale k−1 and time scale ω−1.

In waveguide regions the non-dimensional harmonic fluid potential ψ(x, y) satisfy

the Helmholtz equation

(∇2 + 1)ψ(x, y) = 0, (3.1)

where

ψ(x, y) =


ψ1(x, y), x < −L, 0 6 y 6 a

ψ2(x, y), |x| < L, 0 6 y 6 b.

ψ3(x, y), x > L, 0 6 y 6 a

(3.2)

The fluid potentials ψ1(x, y) and ψ3(x, y) in extended inlet and outlet, respectively,

satisfy the acoustically rigid surfaces:

∂ψ1

∂y
= 0, y = 0, a, x < −L, (3.3)

∂ψ3

∂y
= 0, y = 0, a, x > L. (3.4)

The traveling wave solutions of extended inlet and extended inlet govern respec-

tively the eigenfunction expansions

ψ1(x, y) = ei(x+L) +
∞∑
n=0

An cos(
nπ

a
y)e−iηn(x+L) (3.5)

and

ψ3(x, y) =
∞∑
n=0

Dn cos(
nπ

a
y)eiηn(x−L), (3.6)
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where ηn =
√

1− (n2π2)/a2 be the wave number of nth propagating duct mode in

extended inlet/outlet. Note that the first term in (3.5) denotes incident radiation,

which is assumed to be the fundamental duct mode with unit amplitude. The

eigenfunctions {cos(nπ
a
y)}; n = 0, 1, 2, . . . in extended inlet/outlet are orthogonal

and satisfy the usual orthogonality relation:

∫ a

0

cos(
nπ

a
y) cos(

mπ

a
y)dy =

a

2
δmnεn, (3.7)

where δmn is the Kronecker delta and εn = 2 if n = 0 and εn = 1 otherwise.

The wave-bearing cavity is bounded above with elastic membranes and below with

acoustically rigid surface, that give

∂ψ2

∂y
= 0, y = 0, |x| < L, (3.8)

(
∂2

∂x2
+ µ2

)
∂ψ2

∂y
+ αψ2 = 0, y = b, |x| < L, (3.9)

(
∂2

∂y2
+ µ2

)
∂ψ2

∂x
± αψ2 = 0, x = ±L, a 6 y 6 b. (3.10)

where µ = c/cm in which cm the sound speed on membrane and α = ω2ρ/(Tk3)

in which T the membrane tension are the dimensionless membrane wave number

and the fluid loading parameter, respectively. In addition to the boundary con-

ditions as stated in (3.8)-(3.10), edge conditions at the finite ends of horizontal

and vertical membranes are imposed. These conditions define the physical be-

havior of membranes at joints as well as ensure the uniqueness of the solution.

Their choices may be of fixed, free, spring-like edges or else depending upon the

considered physical model and the aims of investigation. These conditions are

stated in later sections. Equation (5.1) together with (3.8) and (3.9), yields the

eigenfunction expansion of chamber cavity region as

ψ2(x, y) =
∞∑
n=0

(Bne
isnx + Cne

−isnx) cosh(γny), (3.11)

where sn =
√
γ2
n + 1 represents the wave number of nth duct mode of chamber

cavity. Here the quantity γ be the roots of dispersion relation:
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(γ2 + 1− µ2)γ sinh(γb)− α cosh(γb) = 0. (3.12)

There are infinite many values for which (3.12) holds, therefore, γ ≡ γn; n =

0, 1, 2, . . .. These roots are found numerically and contain following properties

[113]:

(i) For every γn, there is −γn.

(ii) There is a finite number of real roots (having Re(γ) 6= 0 and Im(γ) = 0)

depending upon the polynomial factor involving (3.12).

(iii) There is an infinite number of imaginary roots (having Re(γ) = 0 and

Im(γ) 6= 0.)

In order that eigenfunction expansion (3.11) converges, we consider only the real

positive roots (i.e. Re(γ) > 0 and Im(γ) = 0 in complex γ − plane) and the

imaginary positive roots (i.e. Re(γ) = 0 and Im(γ) > 0 in complex γ − plane).

These roots are arranged in such a way that the positive real roots appear first

with descending order, and then the imaginary positive roots occur with increasing

value of the imaginary part (ascending order with respect to imaginary part).

The eigenfunctions Zn(y) = cosh(γny), n = 0, 1, 2, ... associated with the eigen-

values γn; n = 0, 1, 2, . . . are non-orthogonal in nature and satisfy the following

generalized orthogonality relation [113]:

α

∫ b

0

cosh(γmy) cosh(γny)dy = δmnEm − γmγn sinh(γnb) sinh(γmb), (3.13)

where

Em =
αb

2
+

(
3γ2

m + 1− µ2

2γ2
m

)
(γm sinh(γmb))

2 . (3.14)

Moreover, the eigenfunctions Zn(y), n = 0, 1, 2, ... are linearly dependent and their

properties are mentioned below [25].
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∞∑
n=0

[Z
′
n(b)]2

En
= 0,

∞∑
n=0

γ2
n[Z

′
n(b)]2

En
= 1. (3.15)

In addition, the Greens function is constructed to ensure the convergence of emerg-

ing sums, that is

α

∞∑
n=0

Zn(y)Zn(ν)

En
= δ(y− ν) + δ(y+ ν) + δ(y+ ν − 2b), 0 ≤ ν, y ≤ b, (3.16)

where δ(.) is the Dirac delta function. These results are crucial to proving the

point wise convergence of eigenfunction expansion representation (3.11). Note

that the model amplitudes {Am, Bm, Cm, Dm} ; m = 0, 1, 2, . . . in the eigenfunction

expansions defined by (3.5), (3.6) and (3.11), are unknowns. These are determined

after using the matching conditions at the interfaces x = ±L.

3.3 Mode Matching Formulation

Here the pressure and normal velocity modes are matched to determine the un-

known modal coefficients. At interfaces x = ±L, the continuity of pressures reveals

∫ a

0

ψ1(−L, y) cos(
mπ

a
y)dy =

∫ a

0

ψ2(−L, y) cos(
mπ

a
y)dy, (3.17)

∫ a

0

ψ3(L, y) cos(
mπ

a
y)dy =

∫ a

0

ψ2(L, y) cos(
mπ

a
y)dy, . (3.18)

On substituting the eigenfunction expansions (3.5)-(3.6) and (3.11) into (3.17)

and (3.18), then by simplifying the emerging equations with the aid of respective

orthogonality relations, after some rearrangements it is found that

Φ+
m = −δm0 +

4

aεm

∞∑
n=0

χ+
m cos(snL)Rmn, (3.19)

Φ−m = −δm0 −
4i

aεm

∞∑
n=0

χ−m sin(snL)Rmn, (3.20)
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where Φ±m = Am ± Dm and χ±m = Bm ± Cm for m = 0, 1, 2, . . . represent the

amplitudes of symmetric/anti-symmetric modes propagating in extended inlet and

outlet, respectively.

The quantity Rmn reveals the interaction of inlet/outlet modes with expansion

chamber modes at interfaces and is defined by

Rmn =

∫ a

0

cos(
mπ

a
y) cosh(γny)dy. (3.21)

Now the matching of the normal velocity modes is discussed. To incorporate the

vibrational effects of vertical elastic membranes lying along a ≤ y ≤ b at x = ±L

two methods are developed in accompanying subsections.

3.3.1 Tailored-Galerkin Method

The fundamentals of this approach are linked with the assortment of trial functions

which determine the response along the vertical boundaries and their edges. The

dimensionless membrane displacements w1(y) and w2(y) satisfy

∂2w1

∂y2
+ µ2w1 = αψ2, x = −L, a ≤ y ≤ b, (3.22)

and
∂2w2

∂y2
+ µ2w2 = −αψ2, x = L, a ≤ y ≤ b, (3.23)

respectively. By solving (3.22) and (3.23) the membrane displacements are ob-

tained as

w1(y) = a1 cos(µy) + a2 sin(µy) + α

∞∑
n=0

(
Bne

−isnL + Cne
isnL
)

cosh(γny)

γ2
n + µ2

, (3.24)

w2(y) = a3 cos(µy) + a4 sin(µy)− α
∞∑
n=0

(
Bne

isnL + Cne
−isnL

)
cosh(γny)

γ2
n + µ2

. (3.25)

Here quantities aj, j = 1, 2, 3, 4 are unknown constants and that determine the

physical behavior of vertical membranes at edges. These edges can be fixed, free
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or spring-like. Here we calculate the solution by considering the spring-like edge

conditions at y = a and y = b only, whereas, the solution with other combinations

of edge conditions can be obtained through variation in the coupling constants ξ1

and ξ2.

Spring-like Edge Conditions at y = a

The spring-like edge conditions at y = a with coupling constant ξ1 = kξ̄1 are

defined by

ξ1w1 +
∂w1

∂y
= 0, x = −L, (3.26)

ξ1w2 +
∂w2

∂y
= 0, x = L. (3.27)

On invoking (3.24)–(3.25) into (3.26)-(3.27), and then the addition and subtraction

of the resulting equations result

a+
13(ξ1 cos(µa)− µ sin(µa)) + a+

24(ξ1 sin(µa) + µ cos(µa))

= 2iα
∞∑
n=0

χ−n sin(snL)(ξ1 cosh(γna) + γn sinh(γna))

γ2
n + µ2

,

(3.28)

a−13(ξ1 cos(µa)− µ sin(µa)) + a−24(ξ1 sin(µa) + µ cos(µa))

= −2α
∞∑
n=0

χ+
n cos(snL)(ξ1 cosh(γna) + γn sinh(γna))

γ2
n + µ2

,

(3.29)

where a±13 = a1 ± a3 and a±24 = a2 ± a4 are constants.

Spring-like Edge Conditions at y = b

The spring-like edge conditions at y = b containing coupling constant ξ2 = kξ̄2 are

given by
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ξ2w1 +
∂w1

∂y
= 0, x = −L, (3.30)

ξ2w2 +
∂w2

∂y
= 0, x = L. (3.31)

By substituting (3.24)–(3.25) into (3.30)-(3.31), and then by adding and subtract-

ing the governing equations reveal

a+
13(ξ2 cos(µb)− µ sin(µb)) + a+

24(ξ2 sin(µb) + µ cos(µb))

= 2iα
∞∑
n=0

χ−n sin(snL)(ξ2 cosh(γnb) + γn sinh(γnb))

γ2
n + µ2

,

(3.32)

a−13(ξ2 cos(µb)− µ sin(µb)) + a−24(ξ2 sin(µb) + µ cos(µb))

= −2α
∞∑
n=0

χ+
n cos(snL)(ξ2 cosh(γnb) + γn sinh(γnb))

γ2
n + µ2

.

(3.33)

Now by solving (3.28), (3.29), (3.32) and (3.33) simultaneously, the values of

unknowns {a±13, a
±
24} are achieved. Once these quantities become known, the con-

stants aj, j = 1, 2, 3, 4 are obtained in straightforward way from the expressions:

a1 =
1

2
(a+

13 + a−13), a3 =
1

2
(a+

13 − a−13), (3.34)

a2 =
1

2
(a+

24 + a−24), a4 =
1

2
(a+

24 − a−24). (3.35)

From (3.28), (3.29), (3.32) and (3.33), it is noted that one can get the results

with fixed, free and spring-like edges by setting ξj → ∞, ξj → 0 and ξj → 1,

respectively, where j = 1, 2.

In this way the contribution of different physical conditions at the joints may

be incorporated in the responses of the vertical elastic boundaries. Whereas,

to assimilate these responses in the guiding structure, the continuity of normal
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velocities at x = ±L take the form

∂ψ2

∂x
(−L, y) =


∂ψ1

∂x
(−L, y), 0 6 y 6 a,

w1(y), a 6 y 6 b,

(3.36)

∂ψ2

∂x
(L, y) =


∂ψ3

∂x
(L, y), 0 6 y 6 a,

w2(y), a 6 y 6 b.

(3.37)

On substituting (3.5), (3.6), (3.11) and (3.24)-(3.25) into (3.36) and (3.37), and

then by using the orthogonality relation (3.13), after some rearrangements it is

found that:

χ−m =
1

2smGm cos(smL)
{γm sinh(γmb)E

+
24 + αR0m}−

1

2smGm cos(smL)
{α

∞∑
n=0

Φ−n ηnRnm − iαa+
13P1m − iαa+

24P2m}

− α2

smEm cos(smL)

∞∑
n=0

χ−n sin(snL)Tnm
γ2
n + µ2

, (3.38)

χ+
m =

i

2smGm sin(smL)
{γm sinh(γmb)E

−
24 + αR0m}−

i

2smGm sin(smL)
{α

∞∑
n=0

Φ+
n ηnRnm − iαa−13P1m − iαa−24P2m}

+
α2

smEm sin(smL)

∞∑
n=0

χ+
n cos(snL)Tnm
γ2
n + µ2

, (3.39)

where

P1m =

∫ b

a

cos(µy) cosh(γmy)dy, (3.40)

P2m =

∫ b

a

sin(µy) cosh(γmy)dy, (3.41)

and

Tnm =

∫ b

a

cos(γny) cosh(γmy)dy. (3.42)

Here the quantities E±24 = E2 ± E4 are constants in which E2 and E4 appeared

with the implication of orthogonality relation, and their values depend upon the
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conditions on the edges of horizontal membrane and that for fixed edges comprise

∂ψ2

∂y
(±L, b) = 0. (3.43)

By using these edge conditions and then rearranging the resulting equations lead

to

E+
24S1 =α

∞∑
m=0

γm sinh(γmb) tan(smL)

2smEm

[
−R0m +

∞∑
n=0

Φ−n ηnRnm

]

+ α
∞∑
m=0

γm sinh(γmb) tan(smL)

2smEm

[
ia+

13P1m + ia+
24P2m

]
+ α2

∞∑
m=0

γm sinh(γmb) tan(smL)

smEm

[
∞∑
n=0

χ−n sin(snL)Tmn
γ2
n + µ2

]
, (3.44)

E−24S2 =α
∞∑
m=0

γm sinh(γmb) cot(smL)

2ismEm

[
−R0m +

∞∑
n=0

Φ+
n ηnRnm

]

+ α
∞∑
m=0

γm sinh(γmb) cot(smL)

2smEm

[
ia−13P1m + ia−24P2m

]
+ α2

∞∑
m=0

γm sinh(γmb) cot(smL)

smEm

[
∞∑
n=0

χ+
n cos(snL)Tmn
γ2
n + µ2

]
, (3.45)

where S1 and S2 are

S1 =
∞∑
m=0

[γm sinh(γmb)]
2 tan(smL)

2smEm
, (3.46)

and

S2 =
∞∑
m=0

[γm sinh(γmb)]
2 cot(smL)

2smEm
. (3.47)

Thus, for membrane vertical strips the mode-matching tailored-Galarekin (MMTG)

approach yields two systems of equations defined by (3.19)-(3.20) and (3.38)-(3.39)

along with (3.44)-(3.45). These are truncated and inverted for {Φ±m, χ±m} and that

finally yield the unknown amplitudes through the expressions:

Am =
1

2
{Φ+

m + Φ−m}, Dm =
1

2
{Φ+

m − Φ−m}, (3.48)
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Bm =
1

2
{χ+

m + χ−m}, Cm =
1

2
{χ+

m − χ−m}. (3.49)

3.4 Galerkin Approach

In preceding analysis the MMTG approach is used to solve the boundary value

problem, but herein the mode-matching Galerkin (MMG) procedure is developed

to obtain the solution. It would be interesting to compare the results obtained via

MMTG and MMG methods.

The Galerkin approach basically relies on the determinations of a priori solutions to

express the responses along vertical membrane boundaries, and the values of priori

solutions change with variations of physical conditions at the joints or connections

of the vertical membranes.

The fundamentals of the technique has been briefly discussed in [72]. We express

the vertical membrane displacements w1(y) and w2(y) at x = −L and x = L,

respectively, in terms of Fourier series by

w1(y) =
∞∑
n=0

G1nYn(y), (3.50)

w2(y) =
∞∑
n=0

G2nYn(y). (3.51)

Here G1n and G2n for n = 0, 1, 2, . . . are the unknown Fourier coefficients, and

Yn(y) represents the nth eigenfunction that satisfies the eigen equation

d2Yn
dy2

+ λ2
nYn(y) = 0, x = ±L, a < y < b. (3.52)

The exact formulation of eigenfunctions and corresponding eigenvalues satisfying

(3.52) depend upon the conditions at boundaries or joints, which for the problem

discussed herein are assumed fixed, free or spring-like and their possible combina-

tions are explained in accompanying subsections.
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Fixed Edges at y = a

First we consider the case whereby the edges of vertical membranes at y = a,

x = ±L comprise zero displacement, and thus satisfy

Yn(y) = 0, y = a. (3.53)

The eigenfunction satisfying (3.52) and (3.53) takes form Yn(y) = sin[λn(y − a)]

which includes the nth eigenvalue λn and that are determined from the edge con-

ditions at y = b, x = ±L. These conditions include:

• Fixed edges at y = b which reveal the condition Yn(b) = 0, which yields eigen-

values

λn =
nπ

b− a
, n = 1, 2, 3 . . . . (3.54)

• Free edges at y = b that lead to the condition Y ′n(b) = 0, (where prime here and

henceforth denotes differentiation with respect to y) which yields eigenvalues

λn =
(n+ 1

2
)π

b− a
, n = 0, 1, 2 . . . . (3.55)

• Spring-like edges at y = b which satisfy the condition ξ2Yn(b) + Y ′n(b) = 0, and

the eigenvalues are the roots of characteristic equation

ξ2 sin[λn(b− a)] + λn cos[λn(b− a)] = 0, n = 0, 1, 2 . . . . (3.56)

These roots are found numerically.

Free Edges at y = a

At free edges the gradient is zero, that gives

dYn
dy

= 0, y = a. (3.57)
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From(3.52) and (3.57), the eigenfunction Yn(y) = cos[λn(y−a)] is found, whereas,

for the nth eigenvalue λn following edge conditions at y = b, x = ±L are considered.

• Fixed edges at y = b reveal the condition Yn(b) = 0, which yields eigenvalues

λn =
(n+ 1

2
)π

b− a
, n = 0, 1, 2 . . . . (3.58)

• Free edges at y = b and that lead to the condition Y ′n(b) = 0, which yields eigen-

values

λn =
nπ

b− a
, n = 0, 1, 2, . . . . (3.59)

• Spring-like edges at y = b satisfy the condition ξ2Yn(b) + Y ′n(b) = 0, and the

eigenvalues are the roots of characteristic equation

ξ2 cos[λn(b− a)]− λn sin[λn(b− a)] = 0 n = 0, 1, 2 . . . . (3.60)

These roots are found numerically.

Spring-like Edges at y = a

The spring-like edges satisfy the condition

ξ1Yn(a) + Y ′n(a) = 0, y = a. (3.61)

By solving (3.52) and (3.61) the eigenfunction Yn(y) = ξ1 sin[λn(y−a)]+λn cos[λn(y−

a)] is obtained and for eigenvalue λn following edge conditions at y = b, x = ±L

apply:

• Fixed edges at y = b result the condition Yn(b) = 0, and that yields eigenvalues

to be the roots of characteristic equation

ξ1 sin[λn(b− a)] + λn cos[λn(b− a)] = 0 n = 0, 1, 2 . . . . (3.62)
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• Free edges at y = b specify the condition Y ′n(b) = 0, and that result eigenvalues

are roots of equation

ξ1λn cos[λn(b− a)]− λ2
n sin[λn(b− a)] = 0 n = 0, 1, 2 . . . . (3.63)

• Spring-like edges at y = b satisfy the condition ξ2Yn(b) + Y ′n(b) = 0, and the

eigenvalues are the roots of characteristic equation

(ξ1ξ2−λ2
n) sin[λn(b− a)] + (ξ1 + ξ2)λn cos[λn(b− a)] = 0, n = 0, 1, 2 . . . . (3.64)

These roots can be found numerically and their properties can be found in [44].

Note that the eigenfunctions Yn, n = 0, 1, 2, .. in each case are orthogonal and

satisfy the orthogonality relation

∫ b

a

Yn(y)Ym(y)dy = δmnHn, (3.65)

where

Hn =

∫ b

a

Y 2
n (y)dy. (3.66)

From the preceding cases, we have determined the formulation of eigenfunctions

and their corresponding eigenvalues for different set of edge conditions. But the

Fourier coefficients G1n and G2n are still unknowns. By substituting (3.50) and

(3.51) into (3.22) and (3.23), the value of Fourier coefficients G1n and G2n can be

expressed in terms of model amplitudes Bn and Cn, n = 0, 1, 2, . . . as follows:

∞∑
n=0

G1n(µ2 − λ2
n)Yn(y) = α

∞∑
n=0

(Bne
−isnL + Cne

isnL) cosh(γny), (3.67)

∞∑
n=0

G2n(µ2 − λ2
n)Yn(y) = −α

∞∑
n=0

(Bne
isnL + Cne

−isnL) cosh(γny). (3.68)

On multiplying (5.20) and (3.68) by Ym(y), integrating over a to b and using OR

(5.15), it is found after some rearrangements that:
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G1m +G2m = − 2iα

Hm(µ2 − λ2
m)

∞∑
n=0

χ+
n sin(snL)Pmn, (3.69)

and

G1m −G2m =
4α

Hm(µ2 − λ2
m)

∞∑
n=0

χ−n cos(snL)Pmn. (3.70)

where

Pmn =

∫ b

a

Ym(y) cosh(γny)dy. (3.71)

By substituting (3.5), (3.6), (3.11) and (3.50)-(3.51) into (3.36) and (3.37), multi-

plying with α cosh(γmy), integrating from 0 to b and then on using the generalized

OR (3.13), after some rearrangements of the resulting equations with the aid of

(3.69) and (3.70), we reached that:

χ−m =
γm sinh(γmb)E

+
24

2smEm cos(smL)
+

α

2smEm cos(smL)

{
R0m −

∞∑
n=0

Φ−mηnRnm

}

− 2α2

smEm cos(smL)

∞∑
j=0

∞∑
q=0

χ−q cos(sqL)PqmPjm

Hj(µ2 − λ2
j)

, (3.72)

and

χ+
m =

γm sinh(γmb)E
−
24

2ismEm sin(smL)
+

α

2ismEm sin(smL)

{
R0m −

∞∑
n=0

Φ+
n ηnRnm

}

− 2α2

smEm sin(smL)

∞∑
j=0

∞∑
q=0

χ+
q cos(sqL)PqmPjm

Hj(µ2 − λ2
j)

(3.73)

where E±24 are unknown constants which are governed by the implication of or-

thogonality relation. To evaluate that constants, the conditions at the joints of

horizontal membrane are already stated in (3.43). Thus, the computation of E±24

by using (3.43) yields:

E+
24S1 =α

∞∑
m=0

γm sinh(γmb) tan(smL)

2smEm

{
−R0m +

∞∑
n=0

Φ−n ηnRnm

}

+ 2α2

∞∑
j=0

∞∑
m=0

∞∑
q=0

χ−q sin(sqL)γm sinh(γmb) tan(smL)PqjPjq

smEmHj(µ2 − λ2
j)(γ

2
q + µ2)

, (3.74)
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and

E−24S2 =α
∞∑
m=0

γm sinh(γmb) cot(smL)

2smEm

{
−R0m +

∞∑
n=0

Φ+
n ηnRnm

}

+ 2iα2

∞∑
j=0

∞∑
m=0

∞∑
q=0

χ+
q γm sin(sqL) sinh(γmb) cot(smL)PqjPjq

smEmHj(µ2 − λ2
j)(γ

2
q + µ2)

. (3.75)

In this way mode-matching Galerkin (MMG) approach yields two systems of equa-

tions defined by (3.72)-(3.75) together with (3.19)-(3.20). These are truncated and

inverted for {Ψ±m, χ±m} that finally yield the unknown amplitudes by using (3.48)

and (3.49).

3.5 Numerical Results and Discussion

Here the validity of mode-matching tailored-Galerkin (MMTG) and mode-matching

Galerkin (MMG) methods is analyzed numerically, after truncating the linear al-

gebraic systems retained against these methods up to N terms.

Without loss of generality, the truncated solutions are used to investigate the

effects of edge conditions on the scattering energies, and transmission loss versus

frequency. On using the definition given in [93], the reflected energy flux or power

in inlet and transmitted energy flux or power in outlet can be found

Er =
1

2

K−1∑
m=0

|Am|2εmηm (3.76)

and

Et =
1

2

K−1∑
m=0

|Dm|2εmηm, (3.77)

respectively, where the incident energy flux or power is scaled at unity and K

denotes the number of cut-on modes in extended inlet/outlet region. The conser-

vation of energy flux of confined system can be expressed through the conserve

power identity, that is

Er + Et = 1. (3.78)
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It shows that the incident power, that is unity herein, fed into the system is equal

to the sum of the reflected power (Er) and transmitted power (Et).

For numerical computation attention is restricted to the cavity chamber of a stain-

less steel membrane of mass density 0.2kgm−2 and of tension T = 3250 Nm−1. The

density of air ρ and sound speed c are assumed 1.2kgm−3 and 344ms−1, respec-

tively. The dimensional height and half length of chamber region respectively are

b̄ = 0.3m and L̄ = 0.17m, whereas, the dimensional height of extended inlet/outlet

ā = 0.15m is assumed. Note that the mentioned parameters are consistent with

the parameters as used by Lawrie and Guled [101].

In Figs. 3.2–3.4, the reflected power (Er) and transmitted power (Et) against fre-

quency with different sets of edge conditions are shown. The curves with symbols

(N,�, ) are obtained by using MMTG solution whilst the dashed curves represent

MMG solution.

The systems of equations achieved with MMTG and MMG techniques are trun-

cated by taking N = 60 terms, and then are inverted for nine different sets of edge

conditions. These edge conditions are imposed on the joints of vertical membranes

at (x, y) = (±L, a) and (x, y) = (±L, b) and define the characteristics of joints.

The following three groups express the nine sets of edge conditions:

Group-1: Having zero displacement conditions at (x, y) = (±L, a), whereas, zero

displacement, spring-like edge or zero gradient conditions at (x, y) = (±L, b).

Group-2: Having spring-like conditions at (x, y) = (±L, a), whereas, zero dis-

placement, spring-like or zero gradient edge conditions at (x, y) = (±L, b).

Group-3: Having zero gradient conditions at (x, y) = (±L, a), whereas, zero

displacement, spring-like or zero gradient edge conditions at (x, y) = (±L, b).

Fig. 3.2 depicts the curves of reflected and transmitted powers against frequency

for three sets of edge conditions that are listed in Group-1. The first set com-

prises zero displacement edge conditions (ξ1 = ∞) at both (x, y) = (±L, a) and
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(x, y) = (±L, b) and the resulting curve with this set of edge conditions is ex-

pressed through symbol ‘N’ in Fig. 3.2; the second set of edge conditions contains

zero displacement conditions (ξ1 = ∞) at (x, y) = (±L, a) and spring-like condi-

tions (ξ1 = 1) at (x, y) = (±L, b) and the resulting curve with this set of edge

conditions is denoted with symbol ‘�’ and; the third set of edge conditions have

zero displacement conditions (ξ1 =∞) at (x, y) = (±L, a) and zero gradient con-

ditions (ξ1 = 0) at (x, y) = (±L, b) and the resulting curve with this set of edge

conditions is expressed through symbol ‘ ’. From Fig. 3.2 it can be seen that

at f = 1Hz, the majority of the radiated energy goes on transmission which de-

creases by increasing frequency, and reaches to its decremented value before the

point whereby the second mode of the chamber cavity starts propagating, whereas,

the reflected powers behave conversely such that the sum of reflected and trans-

mitted powers for each set of edge conditions is unity (which is being the incident

power). Nevertheless, by changing the edge conditions of the vertical flexible walls

at (x, y) = (±L, b), a variation in scattering energies is evident. This behavior is

more significant about the points whereby the cuts-on of the chamber cavity are

occurred.
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(b) Transmitted power versus frequency.

Figure 3.2: Zero displacement edge conditions at (x, y) = (±L, a) and zero
displacement (N), spring-like (�) or zero gradient ( ) edge conditions at (x, y) =

(±L, b).

Note that the fundamental mode (n = 0) of extended inlet/outlet is always cut-

on due to the presence of zero eigenvalue, which results the propagation of plane

acoustic wave in the duct having rigid boundary conditions. The next energy

propagating modes appear on higher frequencies; such as the second cut-on mode
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Table 3.1: Propagating Modes

Cut-on f(Hz) Inlet-Outlet Expansion Chamber

Region Region

191 1 2

657 1 3

1146 2 3

1194 2 4

1752 2 5

2291 3 5

2316 3 6

2884 3 7

3436 4 7

3453 4 8

4730 4 9

of extended inlet/outlet occurs at f = 1146Hz, however, lies out of the frequency

regime considered herein for analysis. Likewise, in the cavity containing duct

region, which is bounded below with rigid wall and upper with elastic membrane,

a fundamental duct mode remains propagating throughout the frequency regime

due to the presence of one real root of dispersion relation (3.12). Whereas, the

cut-on frequencies of second and third duct modes of this region are 191Hz and

657Hz, respectively, and thus, such modes affect the scattering energies. The list

of cut-on modes frequencies is as shown in Table:1.

In Fig. 3.3, three curves of reflected and transmitted powers associated with three

sets of edge conditions as listed in Group-2 are shown. The curve with symbol‘N’

is achieved by setting spring-like edge conditions (ξ1 = 1) at (x, y) = (±L, a) and

zero displacement conditions (ξ1 =∞) at (x, y) = (±L, b), the curve with symbol

‘�’ is found by keeping spring-like conditions (ξ1 = 1) at both (x, y) = (±L, a)

and (x, y) = (±L, b) and, the curve with symbol ‘ ’ is obtained by fixing spring-

like edge conditions (ξ1 = 1) at (x, y) = (±L, a) and zero gradient conditions

(ξ1 = 0) at (x, y) = (±L, b). From the graphs shown in Fig. 3.3, it can be seen



46

that in start majority of the excited power goes on reflection while transmitted

power behave conversely. The scattering behavior seems opposite at the starting

frequency to the curves as shown in Fig. 3.2. Moreover, a significant deviation in

scattering powers is evident with the variation of edge conditions on the vertical

membranes. Accordingly in Fig. 3.4, the scattering powers associated with three
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(b) Transmitted power versus frequency.

Figure 3.3: Spring-like edge conditions at (x, y) = (±L, a) and zero displace-
ment (N), spring-like (�) or zero gradient ( ) edge conditions at (x, y) = (±L, b).

sets of edge conditions as listed in Group-3 are shown. The curve with symbol‘N’

is achieved by setting zero gradient edge conditions (ξ1 = 0) at (x, y) = (±L, a)

and zero displacement conditions (ξ1 = ∞) at (x, y) = (±L, b), the curve with

symbol ‘�’ is found by keeping zero gradient edge conditions (ξ1 = 0) at (x, y) =

(±L, a) and spring-like conditions conditions (ξ1 = 1) at (x, y) = (±L, b) and,

the curve with symbol ‘ ’ is obtained by fixing zero gradient conditions (ξ1 = 0)

at both (x, y) = (±L, a) and (x, y) = (±L, b). From Fig. 3.4 it is seen that

initially majority of the radiated power goes on reflection, except the case having

zero gradient edge conditions (ξ1 = 0) at (x, y) = (±L, a) and zero displacement

conditions (ξ1 =∞) at (x, y) = (±L, b) (see curve with symbol N). In the later case,

initially majority of the radiated power goes on transmission instead of reflection

as is found in Fig. 3.2 with a little variability of pattern. Moreover, from Figs.

3.2–3.4 it is found that the results obtained via MMTG and MMG methods match

closely. However, some dissimilarities in spring-like edges graphs are found. These

variations are because of the numerical computation of the eigenvalues from the

dispersion relations defined by (3.56), (3.60) and (3.62)-(3.64). Furthermore, the

reflected power (Er) and transmitted power (Et) achieved via MMTG and MMG
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(b) Transmitted power versus frequency.

Figure 3.4: Zero gradient edge conditions at (x, y) = (±L, a) and zero dis-
placement (N), spring-like (�) or zero gradient ( ) edge conditions at (x, y) =

(±L, b).

methods obey the conservation law as defined by (6.129). The performance of a

reactive device is usually measured with the help of transmission loss (TL), and

that for unit incident power can be defined by [101].

TL = −10 log10(Et). (3.79)

The aspect ratio of the silencing device can be calculated by using the formula [101,

111]: R = 2L/(b− a). Huang [111] has shown that the stopbands produced with

the high aspect ratios are wide. Nevertheless, too large value of aspect ratio drops

the resonant peaks of TL below 10 dB. On the other hand, the stopbands produced

by the low aspect ratios are high and narrow. Therefore, to be of practical use

of reactive device in HVAC system, the parametric settings of chamber cavity are

assumed with lower aspect ratios.

In Figs. 3.5–3.7, the TL against frequency is shown. The systems are truncated

to N = 60 terms, whereas, all other involving parameters are kept same as as-

sumed earlier while producing the results of scattering energies. The curves having

symbols (N,�, ) represent the outcomes of MMTG method whilst the results with

MMG are depicted with dashing curves.

Fig. 3.5 refers the TL versus frequency with the sets of edge edge conditions listed
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in Group-1. The curve with symbol ‘N’ represents the setting having zero displace-

ment edge conditions (ξ1 = ∞) at both (x, y) = (±L, a) and (x, y) = (±L, b),

the curve with symbol ‘�’ denotes the case with zero displacement conditions

(ξ1 =∞) at (x, y) = (±L, a) and spring-like conditions (ξ1 = 1) at (x, y) = (±L, b)

and curve with symbol ‘ ’ expresses zero displacement conditions (ξ1 = ∞) at

(x, y) = (±L, a) and zero gradient conditions (ξ1 = 0) at (x, y) = (±L, b). The

peak value of TL with zero displacement conditions on both edges (see curves with

N) is 59.57dB which appears at f = 148Hz in frequency regime 1Hz ≤ f ≤ 750Hz

including passbands and stopbands. The major stopband in frequency range

(115 − 174)Hz with a bandwidth of 1.51 is produced. For spring-like conditions

at y = b as shown by curves with symbol � in Fig. 3.5, the maximum TL is

52.6 dB which appear at 151 Hz, and two stopbands with aspect ratios of 1.51

and 1.42 are produced in frequency ranges (103-156) Hz and (176-201) Hz, respec-

tively. However, by changing the conditions at (x, y) = (±L, b) to zero gradient,

the maximum TL of 37.63dB appears at f = 723Hz (see curves having  in Fig.

3.5). Two stopbands with aspect ratios 1.51 and 1.42 are produced in frequency

ranges (103-156) Hz and 176-201 Hz, respectively.
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Figure 3.5: Transmission loss against frequency with zero displacement edge
conditions at (x, y) = (±L, a) and zero displacement (N), spring-like (�) or zero

gradient ( ) edge conditions at (x, y) = (±L, b).
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Fig. 3.6 depicts TL against frequency with sets of edge conditions that are listed

in Group-2. The curve with symbol‘N’ is achieved by setting spring-like edge

conditions (ξ1 = 1) at (x, y) = (±L, a) and zero displacement conditions (ξ1 =

∞) at (x, y) = (±L, b), the curve with symbol ‘�’ is found by keeping spring-

like conditions (ξ1 = 1) at both (x, y) = (±L, a) and (x, y) = (±L, b) and, the

curve with symbol ‘ ’ is obtained by fixing spring-like edge conditions (ξ1 = 1) at

(x, y) = (±L, a) and zero gradient conditions (ξ1 = 0) at (x, y) = (±L, b).

The peak value of TL with spring-like conditions at y = a and zero displacement

conditions at y = b (see curve with N) is 48.2dB which arises at f = 223Hz and

a stopband in frequency range (200-330) Hz with aspect ratio of 1.65 is revealed.

However, by considering the spring-like edge conditions at both (x, y) = (±L, a)

and (x, y) = (±L, b), the maximum TL of 81.29 dB governs at 181 Hz, and a

stopband in frequency range (150-290) Hz with aspect ratio of 1.93 is achieved

(see curve with symbol � in Fig. 6). Whereas, by replacing the conditions at y = b

from spring-like to zero gradient, the maximum TL of 44.36 dB appears at 145

Hz and a stopband in frequency range (130-183) Hz with aspect ratio of 1.41 is

produced (see curves having  in Fig. 3.6).
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Figure 3.6: Transmission loss against frequency with spring-like edge con-
ditions at (x, y) = (±L, a) and zero displacement (N), spring-like (�) or zero

gradient ( ) edge conditions at (x, y) = (±L, b).
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Fig. 3.7 displays TL versus frequency with sets of edge condition which are listed

in Group-3. The curve with symbol‘N’ is achieved by setting zero gradient edge

conditions (ξ1 = 0) at (x, y) = (±L, a) and zero displacement conditions (ξ1 =∞)

at (x, y) = (±L, b), the curve with symbol ‘�’ is found by keeping zero gradient

edge conditions (ξ1 = 0) at (x, y) = (±L, a) and spring-like conditions conditions

(ξ1 = 1) at (x, y) = (±L, b) and, the curve with symbol ‘ ’ is obtained by fixing

zero gradient conditions (ξ1 = 0) at both (x, y) = (±L, a) and (x, y) = (±L, b).

The peak value of TL with zero gradient conditions at (x, y) = (±L, a) and zero

displacement conditions at (x, y) = (±L, b) (see curves comprising N) is 38.6dB

which appears at f = 187Hz in frequency regime 1Hz ≤ f ≤ 750Hz and two

stopbands with aspect ratios of 1.52 and 1.27 are produced in frequency ranges

(108-164) Hz and (177-225) Hz, respectively. Accordingly, for spring-like condi-

tions at (x, y) = (±L, b) as shown by the curve with symbol � in Fig. 3.7, the

maximum TL of 53 dB occurs at 145 Hz, and a stopband in the frequency range

(132-183) Hz with aspect ratio of 1.4 appears. Whereas, by changing the condi-

tions at (x, y) = (±L, b) from spring-like to zero gradient, the maximum TL is

56.04 dB occurs at 145 Hz, and a stopband in frequency range (134-186) Hz with

bandwidth of 1.39 is produced (see curves having  in Fig. 3.7). Furthermore,

the behavior of TL versus frequency depicted in Figs. 3.5 to 3.7 is respectively

compatible with the transmitted powers shown in Figs. 3.2 to 3.4. It can be seen

that the behavior of TL curves is consistent with the associated transmitted power

components.

Accordingly, from Figs. 3.5–3.7 it is found that the MMTG and MMG curves

almost overlap in whole frequency regime for all the three sets of edge conditions.

Nevertheless, some dissimilarities in the curves whereby involving spring-like con-

ditions occur. These variations in fact appear in MMG solutions, and are due to

the usage of roots of dispersion relations (3.56), (3.60) and (3.62)-(3.64), that are

calculated by using Newton’s method. An augmented principle to retrieve all roots

in the specified region is applied, for details see [45]. In addition, the matching

conditions at x = ±L are reconstructed by using the truncated form of MMTG

and MMG solutions at f = 1000Hz where truncation parameter is kept N = 60
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Figure 3.7: Transmission loss against frequency with zero gradient edge con-
ditions at (x, y) = (±L, a) and zero displacement (N), spring-like (�) or zero

gradient ( ) edge conditions at (x, y) = (±L, b).
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terms. In Fig. 3.9 the matching of real and imaginary parts of pressures are

shown with MMTG and MMG techniques, while the zero displacement conditions

(ξ1 = ∞, ξ2 = ∞) on the edges of vertical flexible walls are considered. In Fig.

3.9(a) and 3.9(b) the real parts of pressure in extended inlet (ψ1(−L, y)) obtained

respectively, through MMTG and MMG methods are matched with respective real
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parts of cavity pressure (ψ2(−L, y)), wherein a good agreement exists. Likewise

matching is evident in imaginary parts of pressure obtained via MMTG and MMG

approaches see Fig. 3.10. In Figs. 3.11 and 3.12 the real and imaginary parts

(a) Real parts of pressures (MMTG). (b) Real parts of pressures(MMG).

Figure 3.9: The real parts of acoustic pressure against duct height obtained
via MMTG and MMG approaches with ā = 0.15m, b̄ = 0.3m, L̄ = 0.17m and

N = 60.

(a) Imagnary parts of pressures(MMTG). (b) imagnary parts of pressures (MMG).

Figure 3.10: The imaginary parts of acoustic pressure against duct height
obtained via MMTG and MMG approaches with ā = 0.15m, b̄ = 0.3m, L̄ =

0.17m and N = 60.

of normal velocities achieved with truncated form of MMTG and MMG methods

are displayed. It can be seen that the normal velocity curves of extended inlet

and cavity chamber coincide at x = −L. In this way the matching conditions

considered in (3.18) and (3.36) are fully reconstructed. Likewise, the matching
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conditions (3.19) and (3.37), can be reformulated by using the truncated velocity

formulations of cavity chamber and extended outlet achieved through MMTG and

MMG methods. Furthermore, the transmission loss against truncation parameter

N with MMG and MMTG is shown in Fig. 3.8. It can be seen that by increasing

the number of terms the solution converges adequately when N > 40.

Therefore, the attention is restricted to N = 60 while producing the numerical

results.

(a) Real parts of velocities (MMTG). (b) Real parts of velocities (MMG).

Figure 3.11: The real parts of normal velocities against duct height obtained
via MMTG and MMG approaches with ā = 0.15m, b̄ = 0.3m, L̄ = 0.17m and

N = 60.

(a) Imagnary parts of velocities (MMTG). (b) Imagnary part of velocities (MMG).

Figure 3.12: The imaginary parts of normal velocities against duct height
obtained via MMTG and MMG approaches with ā = 0.15m, b̄ = 0.3m, L̄ =

0.17m and N = 60.
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The reformulation of matching conditions with truncated solutions as well as the

satisfaction of the conservation laws confirm that the performed algebra is correct.

The TL against number of terms depicts that the retained systems when N > 40

reveal an adequate convergent solutions.



Chapter 4

Reflection and Transmission of

Acoustic Wave through the

Bridging Membrane Junctions

4.1 Introduction

The analysis of fluid-structure coupled waves in non-planar ducts or channels is

challenging as well as important subject with a diverse range of applications in

structural acoustics, water wave theory, seismological waves through lyres of rocks,

and noise reduction problems etc. The motivation behind is the necessity to model

and understand the scattering behavior, in channels or guiding structures, with

the help of which the structural vibrations and related issues could be addressed.

The aims of current study are; first, to analyze the scattering effects of verti-

cal membranes or rigid plates of a flexible cavity subject to different conditions

on the joints of vertical membranes and second, to develop a solution procedure

that provides a unique description of basis functions to apply the variety of edge

conditions on vertical flexible components. The new approach has a variation

of Glarekin procedure and is different from the already existing approach [119].

55
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The displacements of the vertical membranes are expressed such that their homo-

geneous parts contain material properties of the boundaries while their integral

parts include cavity vibrations. The variation of basis functions associated with

different edge conditions can be computed directly with less computational cost.

Further, the proposed formulation avoids root finding algorithm.

The present study is different from [119] in the following directions. The geomet-

rical configuration involves cavity in a flexible infinite waveguide which makes the

problem more physical. The proposed configuration seems like an HVAC compo-

nent having expansion chamber to attenuate noise. With the assumed setting the

problem includes more interface conditions which result multiple linear algebraic

systems to solve. Further, it includes two bridging flexible height discontinuities

instead of a bridging flexible height as assumed by Lawrie and Afzal [119]. They

introduced the Galerkin and the tailored-Galerkin procedures to encounter the

vibrational response of single bridging flexible height. In the first approach the

vibrational modes of bridging flexible height are expressed in terms of orthogonal

basis functions while the later relies on the non-orthogonal modes of semi-infinite

regions. The main disadvantage of first technique is the assumption of appropriate

orthogonal basis that changes with the variation of edge conditions on the bridging

height. On the other hand, the second approach contains a unique description for

all set of edge conditions but has high computational cost. The reason behind the

computational cost is the slow convergence rate of sums which appear with the

imposition of edge conditions and that depend upon the non-orthogonal modes of

semi-infinite region. Moreover, the modeled problem is solved by using the Low

Frequency Approximation (LFA). This approach is well known, see for example

[114] and [101, 102], especially in low frequency regime, wherein the contributions

from the fundamental and/or next mode are significant.

The chapter is arranged as follows: The mathematical formulation and related

theoretical background are explained in Section 2. The MM solution is provided

in Section 3. The MM procedure used in traditional way to the BVP with rigid

vertical strips is elucidated in sub-section 3.1, whilst, the MM in conjunction with

tailored Galerkin approach for the BVP with membrane vertical strips is provided
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in sub-section 3.2. The LFA is detailed in Section 4. Numerical results, and

discussion on results are given in Section 5. Finally, the concluding remarks are

contained in Section 6.

4.2 Formulation of the Physical Model

The boundary value problem is governed by considering an infinite, two dimen-

sional rectangular waveguide stretched along x̄−direction in dimensional coordi-

nate plane (x̄, ȳ), where over bars denote the dimensional setting of coordinates.

The inside of the waveguide is filled with compressible fluid of density ρ and sound

speed c, whereas the outside of it is set into vacou. The lower horizontal wall of the

waveguide is assumed to be acoustically rigid, whilst, the upper horizontal walls

of it are elastic membranes. Two vertical strips lying along x̄ = ±L, ā 6 ȳ 6 b̄

divide the waveguide into three duct regions i.e., the inlet, the expansion chamber

and the outlet. The material properties of the vertical strips are assumed to be;

a) acoustically rigid or b) elastic membranes. The physical configuration of the

waveguide is shown in Fig.4.1

Let Φ̄(x̄, ȳ, t̄) represents the dimensional time dependent velocity potential in

waveguide, which after suppressing the harmonic time dependent eiωt̄ through-

out the BVP, can be termed as Φ̄(x̄, ȳ, t̄)= ψ̄(x̄, ȳ)eiωt̄. Moreover, the BVP is

non-dimensionalized with respect to the length scale k−1 and time scale ω−1. The

non-dimensional form of the Helmholtz’s equation along with the rigid and mem-

brane boundary conditions are respectively given by:

(∇2 + 1)ψj(x, y) = 0, j = 1, 2, 3, (4.1)

∂ψj
∂y

(x, y) = 0, j = 1, 2, 3 y = 0, −∞ < x <∞, (4.2)

and

(
∂2

∂x2
+ µ2

h)
∂ψ1

∂y
+ αhψ1 = 0, y = a, x < −L, (4.3)
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Figure 4.1: The physical configuration of waveguide.

(
∂2

∂x2
+ µ2

h)
∂ψ2

∂y
+ αhψ2 = 0, y = b, |x| < L, (4.4)

(
∂2

∂x2
+ µ2

h)
∂ψ3

∂y
+ αhψ3 = 0, y = a, x > L, (4.5)

for instance see [101]. Clearly, ψj(x, y) for j=1,2 and 3 stand for the non-dimensional

velocity potentials in the inlet region (x 6 −L, 0 6 y 6 a), expansion chamber

(|x| < L, 0 6 y 6 b) and outlet region (x ≥ L, 0 6 y 6 a), respectively. The

quantities µh = c/ch and αh = ρω/(Thk
3) are the membrane wave number and

the fluid loading parameter, respectively containing horizontal membrane mass

density ch and tension Th.

The bounding characteristic of the vertical strips lying along x = ±L, a 6 y 6 b

can be rigid or membrane, that will be defined later.

Consider an incident wave of inlet duct mode enters from negative x−direction to

an expansion chamber wherein it scatters in to infinite number of reflected and

transmitted modes. The eigenfunction expansion form of velocity potentials in the
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inlet, the expansion chamber and the outlet regions is found as:

ψ1(x, y) = F` cosh(τ`y)eiη`(x+L) +
∞∑
n=0

An cosh(γny)eiηn(x+L), (4.6)

ψ2(x, y) =
∞∑
n=0

{
Bne

isnx + Cne
−isnx

}
cosh(γny), (4.7)

and

ψ3(x, y) =
∞∑
n=0

Dn cosh(γny)eiηn(x−L), (4.8)

respectively. Note that the first term on the right hand side of equation (4.6)

stands for incident wave with forcing F` =
√
αh/E`η` , with ` = 0, 1 (E` will be

defined later). The quantities ηn =
√

1 + τ 2
n and sn =

√
1 + γ2

n are the wave num-

bers of the nth mode propagating in the inlet/outlet and the expansion chamber,

respectively. The eigenvalues τn; n = 0, 1, 2, . . . in the inlet/outlet regions are the

roots of the dispersion relation, N(τ) = 0, where

N(τ) = (τ 2 + 1− µ2
h)τ sinh(τa)− αh cosh(τa). (4.9)

These roots can be found numerically and contain following properties [114]:

• For every τn, there is τ ∗n (note that the asterisk stands for complex conjugate

).

• The real roots (Re(τ) 6= 0 and Im(τ) = 0) are finite depending upon the

approximated polynomial dispersion relation (9).

• There is an infinite number of imaginary roots (having Re(τ) = 0 and

Im(τ) 6= 0).

To ensure the convergence of series solution (7), only real positive roots (i.e. for

τ roots Re(τ) > 0 and Im(τ) = 0 in complex τ -plane) and the imaginary positive

roots (i.e. τ roots Re(τ) = 0 and Im(τ) > 0 in complex τ -plane) are considered.

All these roots are arranged such that the positive real roots appear first with

descending order, and then the imaginary positive roots appear with ascending
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order of imaginary part. Further, the eigenfunctions {cosh(τny);n = 0, 1, 2, } hav-

ing eigenvalues {τn;n = 0, 1, 2, } are linearly dependent and satisfy the generalized

orthogonal properties as given in [39].

The corresponding eigenfunctions satisfy generalized orthogonality relation (OR)

that is,

αh

∫ a

0

cosh(τmy) cosh(τny)dy = δmnEm − τmτn sinh(τna) sinh(τma), (4.10)

where, δmn is the Kronecker delta and

Em =
αha

2
+

(
3τ 2
m + 1− µ2

2τ 2
m

)
[τm sinh(τma)]2 . (4.11)

Likewise the eigenvalues γn; n = 0, 1, 2 . . . in the expansion chamber satisfy the

dispersion relation M(γ) = 0, where

M(γ) = (γ2 + 1− µ2
h)γ sinh(γb)− αh cosh(γb). (4.12)

The corresponding eigenfunctions satisfy the generalized OR

αh

∫ b

0

cosh(γmy) cosh(γny)dy = δmnGm − γmγn sinh(γnb) sinh(γmb), (4.13)

where

Gm =
αhb

2
+

(
3γ2

m + 1− µ2
h

2γ2
m

)
[γm sinh(γmb)]

2 . (4.14)

Note that the coefficients {Am, Bm, Cm, Dm}; m = 0, 1, 2 . . . in the eigenfunction

expansions defined by (6)-(8) are the modal amplitudes and are unknowns. These

are determined after using the matching conditions at the interfaces x = ±L.

4.3 Mode Matching Solution

Here we use the continuity of pressures and normal velocities across the regions at

interfaces to determine the unknowns modal amplitudes. At matching interfaces
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x = ±L, the continuity conditions of pressures are defined by:

ψ1(−L, y) = ψ2(−L, y), 0 6 y 6 a, (4.15)

ψ3(L, y) = ψ2(L, y), 0 6 y 6 a. (4.16)

On using (4.6)-(4.8) into (4.15) and (4.16), multiplying with αh cosh(τmy), inte-

grating from 0 6 y 6 a and then simplifying the resulting with the aid of OR

(4.10), we get

Φ+
m =

1

Em
{−F`δm`E` + τm sinh(τma)J+

13 + 2αh

∞∑
n=0

χ+
n cos(snL)Rmn}, (4.17)

Φ−m =
1

Em
{−F`δm`E` + τm sinh(τma)J−13 − 2iαh

∞∑
n=0

χ−n sin(snL)Rmn}, (4.18)

where Φ±m = Am ± Dm and χ±m = Bm ± Cm for m = 0, 1, 2, ... represent the

amplitudes of symmetric/anti-symmetric modes propagating in inlet/outlet and

the expansion chamber, respectively.

The quantity Rmn reveals the interaction of inlet/outlet modes with expansion

chamber modes at interfaces and is defined by

Rmn =

∫ a

0

cosh(τmy) cosh(γny)dy, (4.19)

whereas, J±13 = J1 ± J3 are constants in which

J1 =
∂ψ1

∂y
(−L, a) and J3 =

∂ψ3

∂y
(L, a). (4.20)

These constants describe the physical behavior of horizontal membranes bounding

the inlet/outlet ducts on finite edges (±L, a). For fixed membrane edges, we

assume zero displacement conditions at finite edges i.e.,

∂ψ1

∂y
(−L, a) = 0 and

∂ψ3

∂y
(L, a) = 0. (4.21)

which yields J±13 = 0.
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Now to determine the explicit relations of the amplitudes of expansion chamber

modes χ±m,m = 0, 1, 2, ..., the continuity conditions of normal velocities at inter-

faces are used.

There are two cases in this regard depending upon the properties of vertical strips

which are discussed in subsequent subsections.

4.3.1 Rigid Strips

First we assume that the surfaces lying along x = ±L, a 6 y 6 b to be acoustically

rigid that is
∂ψ2

∂x
(±L, y) = 0, a 6 y 6 b. (4.22)

Thus the appropriate conditions of normal velocities at interfaces, after multiplied

by αh cosh(γmy) and integrated over 0 to b, can be written as

∫ b

0

αh cosh(γmy)
∂ψ2

∂x
(−L, y)dy =

∫ a

0

αh cosh(γmy)
∂ψ1

∂x
(−L, y)dy (4.23)

∫ b

0

αh cosh(γmy)
∂ψ2

∂x
(L, y)dy =

∫ a

0

αh cosh(γmy)
∂ψ3

∂x
(L, y)dy. (4.24)

On substituting (4.6)-(4.8) into (4.23) and (4.24), using the OR (4.13) and then

rearranging the resulting equations, we obtain

χ−m =
1

2smGm cos(smL)
{γm sinh(γmb)J

+
24+αhF`η`R`m−αh

∞∑
n=0

Φ−mηnRnm}, (4.25)

χ+
m =

i

2smGm sin(smL)
{γm sinh(γmb)J

−
24 +αhF`η`R`m−αh

∞∑
n=0

Φ+
mηnRnm}, (4.26)

where J±24 = J2 ± J4 are constants in which

J2 = −i ∂
2ψ2

∂x∂y
(−L, b) and J4 = −i ∂

2ψ2

∂x∂y
(L, b). (4.27)

These constants determine the behavior of membrane bounding the expansion

chamber at edge (±L, b). For physically fixed edges, the membrane displacement
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is zero, that is
∂ψ2

∂y
(−L, b) = 0 and

∂ψ2

∂y
(L, b) = 0, (4.28)

which after using (4.7) lead to

∞∑
n=0

χ+
m cos(smL)γn sinh(γnb) = 0, (4.29)

∞∑
n=0

χ−m sin(smL)γn sinh(γnb) = 0. (4.30)

On multiplying (4.25) by sin(smL)γm sinh(γmy) and (4.26) by cos(smL)γm sinh(γnb),

summing over m, and then simplifying with the help of (4.29)-(4.30), we find

J+
24 =

αh
S1

∞∑
m=0

γm sinh(γmb) tan(smL)

2smGm

{−F`η`R`m +
∞∑
n=0

Φ−n ηnRnm}, (4.31)

J−24 =
αh
S2

∞∑
m=0

γm sinh(γmb) cot(smL)

2smGm

{−F`η`R`m +
∞∑
n=0

Φ+
n ηnRnm}, (4.32)

where

S1 =
∞∑
m=0

[γm sinh(γmb) tan(smL)]2

2smGm

(4.33)

and

S2 =
∞∑
m=0

[γm sinh(γmb) cot(smL)]2

2smGm

. (4.34)

In this way, for rigid vertical strips the Mode-Matching procedure yields two sys-

tems of equations defined by (4.17)-(4.18) and (4.25)-(4.26) along with (4.31)-

(4.32) containing infinite unknowns in each system. Now these systems can be

truncated and solved numerically for unknown amplitudes.

4.3.2 Membrane Strips –a tailored-Galerkin Approach

Here the vertical strips at interfaces lying along x = ±L, a 6 y 6 b are assumed

elastic membranes. This alteration replaces the Neumann’s type boundary con-

ditions along the vertical strips with the higher order boundary conditions, for
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which the use of traditional Mode-Matching procedure is inappropriate. There-

fore, a tailored Galerkin approach is developed. This approach is different from

the approaches already adopted by Lawrie and Afzal [81] and it provides compet-

itively a more convenient and flexible way of imposing extra edge conditions. The

set of basis functions for the displacements of vertical membranes are determined

from the given conditions at interfaces. Then the extra conditions are imposed

to determine the particular shape of propagating modes. The displacement of

vertical membranes satisfy the equations:

∂2w1

∂y2
+ µ2

vw1 = αvψ2, x = −L, a 6 y 6 b, (4.35)

∂2w2

∂y2
+ µ2

vw2 = −αvψ2, x = L, a 6 y 6 b, (4.36)

where µv = c/cv and αv = ρω/(Tvk
3) are the membrane wave number and the

fluid loading parameters, respectively. On solving the differential equation (4.35)

and (4.36), the membrane displacement are found to be:

w1(y) = a1 cos(µvy)+a2 sin(µvy)+αv

∞∑
n=0

(Bne
−isnL + Cne

isnL) cosh(γny)

γ2
n + µ2

v

, (4.37)

w2(y) = a3 cos(µvy)+a4 sin(µvy)−αv
∞∑
n=0

(Bne
isnL + Cne

−isnL) cosh(γny)

γ2
n + µ2

v

, (4.38)

where the quantities aj, j = 1, 2, 3, 4 are constants whose values will be found

through edge conditions. On adding and subtracting (4.37) and (4.38), the sym-

metric and anti-symmetric modes are found as

W−(y) = a−13 cos(µvy) + a−24 sin(µvy)− 2iαv

∞∑
n=0

χ−n sin(snL) cosh(γny)

γ2
n + µ2

v

, (4.39)

W+(y) = a+
13 cos(µvy) + a+

24 sin(µvy) + 2αv

∞∑
n=0

χ+
n cos(snL) cosh(γny)

γ2
n + µ2

v

, (4.40)

where a±13 = a1 ∓ a3, a±24 = a2 ∓ a4 and W±(y) = w1(y)∓ w2(y). Now we impose

extra edge conditions which not only define the type of connection of vertical

membranes having at finite edges y = a and y = b but also ensure the uniqueness
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of the solution. In order to explain the versatility of approach three different types

of such conditions are discussed in the subsequent subsections.

i) Fixed Edges

In case of fixed edges the displacements are zero, thus satisfy

W±(a) = 0 = W±(b). (4.41)

On using into (4.39)-(4.40) into (4.41), the matrix forms of unknown constants are

obtained as: 
a−13

a−24

 = U−1
1

2iαv
∑∞

n=0

χ−n sin(snL) cosh(γna)

γ2
n + µ2

v

2iαv
∑∞

n=0

χ−n sin(snL) cosh(γnb)

γ2
n + µ2

v

 (4.42)

and 
a+

13

a+
24

 = U−1
1

−2αv
∑∞

n=0

χ+
n cos(snL) cosh(γna)

γ2
n + µ2

v

−2αv
∑∞

n=0

χ+
n cos(snL) cosh(γnb)

γ2
n + µ2

v

 . (4.43)

where

U1 =

cos(µva) sin(µva)

cos(µvb) sin(µvb)

 . (4.44)

Now the constants a±13 and a±24 can easily be found from (4.42) and (4.43) which

yield aj, j = 1, 2, 3, 4.

ii) Free Edges

For free edges, the gradient is zero, that are

∂W±(a)

∂y
= 0 =

∂W±(b)

∂y
, (4.45)
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On using (4.39)-(4.40) into (4.45), the suitable matrix forms of unknowns are found

to be 
a−13

a−24

 = U−1
2

2iαv
∑∞

n=0

χ−n sin(snL)γn sinh(γna)

γ2
n + µ2

v

2iαv
∑∞

n=0

χ−n sin(snL)γn sinh(γnb)

γ2
n + µ2

v

 , (4.46)


a+

13

a+
24

 = U−1
2

−2αv
∑∞

n=0

χ+
n cos(snL)γn sinh(γna)

γ2
n + µ2

v

−2αv
∑∞

n=0

χ+
n cos(snL)γn sinh(γnb)

γ2
n + µ2

v

 , (4.47)

where

U2 =

−µv sin(µva) µv cos(µva)

−µv sin(µvb) µv cos(µvb)

 , (4.48)

which yield constants a±13 and a±24.

iii) Spring-like Edges

The spring like conditions corresponds to a situation in which membrane is at-

tached to a light spring which moves horizontally in the plane y = a and y = b.

The appropriate edge conditions in this case for the problem in hand are

ξaw1 +
∂w1

∂y
= 0, y = a (4.49)

ξbw2 +
∂w2

∂y
= 0, y = b (4.50)

where ξa = ξ̄a/k and ξb = ξ̄b/k in which ξ̄a and ξ̄b are coupling constants. On using

(4.39)-(4.40) into (4.49)-(4.50) two systems containing unknowns a±13 and a±24 are

obtained. The matrix form of these system are


a−13

a−24

 = U−1
3

2iαv
∑∞

n=0

χ−n sin(snL){ξa cosh(γna) + γn sinh(γna)}
γ2
n + µ2

v

2iαv
∑∞

n=0

χ−n sin(snL){ξb cosh(γnb) + γn sinh(γnb)}
γ2
n + µ2

v

 . (4.51)
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and
a+

13

a+
24

 = U−1
3

−2αv
∑∞

n=0

χ+
n cos(snL){ξa cosh(γna) + γn sinh(γna)}

γ2
n + µ2

v

−2αv
∑∞

n=0

χ+
n cos(snL){ξb cosh(γnb) + γn sinh(γnb)}

γ2
n + µ2

v

 . (4.52)

where

U3 =

ξa cos(µva)− µv sin(µva) ξa sin(µva) + µv cos(µva)

ξb cos(µvb)− µv sin(µvb) ξb sin(µvb) + µv cos(µvb)

 (4.53)

Now from (4.51)-(4.52) the constants a±13 and a±24 can be found in a straightforward

way.

Now we assume the continuity of normal velocities at x = ±L. The appropri-

ate velocity conditions for membrane strip when multiplied by αh cosh(γny) and

integrated from 0 to b takes the form:

∫ b

0

αh cosh(γmy)
∂ψ2

∂x
(−L, y)dy =

∫ a

0

αh cosh(γmy)
∂ψ1

∂x
(−L, y)dy

+

∫ b

a

αh cosh(γmy)w1(y)dy (4.54)

and

∫ b

0

αh cosh(γmy)
∂ψ2

∂x
(L, y)dy =

∫ a

0

αh cosh(γmy)
∂ψ3

∂x
(L, y)dy

+

∫ b

a

αh cosh(γmy)w2(y)dy. (4.55)

On invoking (4.6)-(4.8) into (4.54) and (4.55), using the OR (4.13) and then sim-

plifying the resulting equations, we find

χ−m =
1

2smGm cos(smL)
{γm sinh(γmb)J

+
24 + αhF`η`R`m − αh

∞∑
n=0

Φ−n ηnRnm}

− αh
2smGm cos(smL)

{ia+
13P1m + ia+

24P2m − 2αv

∞∑
n=0

χ−n sin(snL)Tmn
γ2
n + µ2

v

},

(4.56)
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χ+
m =

i

2smGm sin(smL)
{γm sinh(γmb)J

−
24 + αhF`η`R`m − αh

∞∑
n=0

Φ+
n ηnRnm}

+
αh

2smGm sin(smL)
{a−13P1m + a−24P2m + 2αv

∞∑
n=0

χ+
n cos(snL)Tmn
γ2
n + µ2

v

},

(4.57)

where

P1m =

∫ b

a

cos(µvy) cosh(γmy)dy, (4.58)

P2m =

∫ b

a

sin(µvy) cosh(γmy)dy, (4.59)

and

Tmn =

∫ b

a

cos(γny) cosh(γmy)dy. (4.60)

Note that there appear constants J±24 in (4.56) and (4.57). These constants describe

the behavior of horizontal membrane of expansion chamber on edges and are found

from the edge conditions. For fixed edges conditions (4.28), it is found that

J+
24 =

αh
S1

∞∑
m=0

γm sinh(γmb) tan(smL)

2smGm

{−F`η`R`m + ia+
13P1m + ia+

24P2m}

+
αh
S1

∞∑
n=0

∞∑
m=0

γm sinh(γmb) tan(smL)

2smGm

{Φ−n ηnRnm −
2αvχ

−
n sin(snL)Tmn
(γ2
n + µ2

v)
} (4.61)

and

J−24 =
αh
S2

∞∑
m=0

γm sinh(γmb) cot(smL)

2smGm

{−F`η`R`m + ia−13P1m + ia−24P2m}

+
αh
S2

∞∑
n=0

∞∑
m=0

γm sinh(γmb) cot(smL)

2smGm

{Φ+
n ηnRnm +

2iαvχ
+
n cos(snL)Tmn
(γ2
n + µ2

v)
}. (4.62)

Thus, for membrane vertical strips the Mode-Matching procedure in conjunction

with tailored-Galerkin approach yields two systems of equations defined by (4.17)-

(4.18) and (4.56)-(4.57) along with (4.61)-(4.62).

These are truncated first and then solved numerically by considering different set of
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edge conditions imposed on vertical membrane strips to get unknown amplitudes.

4.4 Low Frequency Approximation

Here the modeled problem is solved by using the Low-frequency approximation

(LFA). The approach is useful especially in low frequency regime wherein only

limited number of modes are important to analyze energy scattering. The usual

LFA discussed in [101], for an unmodified expansion chamber, is derived by ap-

proximating the velocity potentials to the fundamental plane wave modes of duct

regions. However, for the current geometry the velocity potentials of inlet/outlet

and expansion chamber are truncated to M and N modes respectively.

Thus, M + 1 modes in inlet/outlet and N + 1 modes in expansion chamber will be

taken into consideration. But the total number of modes 2M+N+3, are consistent

with number the physical conditions applied on the configuration. Therefore, the

eigenfunction expansions of field potentials are approximated as:

ψ1(x, y) ≈ F` cosh(τ`y)eiη`(x+L) +
M∑
n=0

An cosh(τny)e−iηn(x+L), x < −L, (4.63)

ψ2(x, y) ≈
N∑
n=0

(Bne
isnx + Cne

−isnx) cosh(γny), x > −L, (4.64)

ψ3(x, y) ≈
M∑
n=0

Dn cosh(τny)eiηn(x−L), x < L, (4.65)

where An, {Bn, Cn} and Dn are the approximated amplitudes of scattering waves

in the inlet, expansion chamber and outlet regions, respectively.

Now to determine these approximated amplitudes following conditions are applica-

ble by using low frequency approximation. The continuity of pressures and normal
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velocities reveal ∫ a

0

ψ1(−L, y)dy =

∫ a

0

ψ2(−L, y)dy, (4.66)∫ a

0

ψ3(L, y)dy =

∫ a

0

ψ2(L, y)dy, (4.67)

and

∫ a

0

∂ψ2

∂x
(−L, y)dy =

∫ a

0

∂ψ1

∂x
(−L, y)dy, (4.68)∫ a

0

∂ψ2

∂x
(L, y)dy =

∫ a

0

∂ψ3

∂x
(L, y)dy, (4.69)

respectively. Now on invoking (4.63)-(4.65) into (4.66)-(4.69), which after some

rearrangements of the resulting equations lead to

M∑
n=0

Φ+
n sinh(τna)

τn
= −F` sinh(τ`a)

τ`
+

N∑
n=0

2χ+
n cos(snL) sinh(γna)

γn
(4.70)

M∑
n=0

Φ−n sinh(τna)

τn
= −F` sinh(τ`a)

τ`
+

N∑
n=0

2iχ−n sin(snL) sinh(γna)

γn
(4.71)

and

N∑
n=0

2χ+
n sn cos(snL) sinh(γna)

γn
=
F` sinh(τ`a)

τ`
−

M∑
n=0

Φ+
n ηn sinh(τna)

τn
(4.72)

N∑
n=0

2iχ−n sn sin(snL) sinh(γna)

γn
= −F` sinh(τ`a)

τ`
−

M∑
n=0

Φ−n ηn sinh(τna)

τn
. (4.73)

Furthermore, to consider the effects of edge conditions imposed on the finite edges

of horizontal membranes we use (4.63)-(4.65) into (4.21) and (4.28), which after

some manipulation yield

M∑
n=0

Φ±n τn sinh(τna) = −F`τ` sinh(τ`a), (4.74)

N∑
n=0

χ+
n γn sinh(γnb) cos(snL) = 0, (4.75)
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and

N∑
n=0

χ−n γn sinh(γnb) sin(snL) = 0, (4.76)

Moreover, some more modes in expansion chamber can be included by considering

the properties of vertical strips at interfaces x = ±L. Two cases are considered

herein that are discussed in following subsections.

4.4.1 Rigid Strips

In this case the velocity flux along the strips x = ±L, a 6 y 6 b is assumed to be

zero i.e., ∫ b

a

∂ψ2

∂x
(±L, y)dy = 0. (4.77)

which lead to

N∑
n=0

snχ
−
n cos(snL){sinh(γnb)− sinh(γna)}

γn
= 0, (4.78)

N∑
n=0

snχ
+
n sin(snL){sinh(γnb)− sinh(γna)}

γn
= 0. (4.79)

In this way two systems of equations defined by (4.70)-(4.76) and (4.78)-(4.79) are

obtained. These can be solved for unknown amplitudes after fixing the truncating

parameters M = 1 and N = 2.

4.4.2 Membrane Strips

Here we assume the case when vertical strips along x = ±L, a 6 y 6 b are taken

to be elastic membranes. The appropriate velocity flux conditions at x = ±L ,

a 6 y 6 b can be given by

∫ b

a

∂ψ2

∂x
(−L, y)dy =

∫ b

a

w1(y)dy, (4.80)
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and

∫ b

a

∂ψ2

∂x
(L, y)dy =

∫ b

a

w2(y)dy. (4.81)

On invoking (4.64) along with the truncated forms of (4.37) and (4.38) into (4.80)

and (4.81), and after some algebraic manipulation it is found that

N∑
n=0

2iχ−n {sn cos(snL)(γ2
n − µ2

v)) + αv sin(snL)}(sinh(γnb)− sinh(γna))

γn(γ2
n − µ2

v)
=

a−13

µv
{sin(µvb)− sin(µva)} − a−24

µv
{cos(µvb)− cos(µva)} (4.82)

and

N∑
n=0

2χ+
n {sn sin(snL)(γ2

n − µ2
v)) + αv cos(snL)}(sinh(γnb)− sinh(γna))

γn(γ2
n − µ2

v)
=

a+
13

µv
{sin(µvb)− sin(µva)} − a+

24

µv
{cos(µvb)− cos(µva)}. (4.83)

Thus, we obtain two systems of equations defined by (4.70)-(4.76) and (4.82)-

(4.83), that can be solved for unknown amplitudes after fixing M = 1 and N = 2.

4.5 Numerical Results and Discussion

The graphical results presented in this section are obtained from the truncated

forms of Mode-Matching (MM) and Mode-Matching tailored Galerkin (MMTG)

approaches. For the fundamental mode incident, the MM and MMTG results

are shown in comparison with the Low Frequency Approximation (LFA). The

numerical computations are performed after fixing the parameters as: membrane

tension T = 3250 Nm−1, membrane mass density ρm = 0.2 kgm−3, the speed of

sound in air c = 344 ms−1, density of air ρ = 1.2 kgm−3, and the dimensional duct

heights ā = 0.15 m, b̄ = 0.3 m and L̄ = 0.17 m. The reflected energy flux in inlet
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and the transmitted energy flux in outlet are found by using the definition given

in [112] as

Er =
1

α

K−1∑
m=0

|Am|2ηmEm (4.84)

and

Et =
1

α

K−1∑
m=0

|Dm|2ηmEm, (4.85)

respectively, where the incident energy flux/power is being scaled at unity and

thus yields the conserve power identity Er + Et = 1. This identity states that if

unit power is given to the system it will be equal to the sum of scattering powers

in the inlet and outlet duct regions. Note that the quantity K denotes the number

of cut-on in inlet/outlet ducts |x| > L.

For comparison purposes, the graphs with vertical rigid strips are depicted in Fig.

4.2 whilst the results with membrane vertical strips subjected to different edge con-

ditions are shown in Figs. 4.3–4.5. Two different exciting modes are considered

to get the scattering energies against frequency; the structural-borne mode (fun-

damental mode) incident Figs. 4.2(a)–4.5(a) and the fluid-borne mode (secondary

mode) incident Figs. 4.2(b)–4.5(b). It is found that the results obtained via MM,

MMTG techniques and LFA coincide for fundamental mode incident while for

the higher order mode incident the matching is not good enough. Therefore the

results obtained via MM, MMTG and LFA are compared for fundamental mode

incident only. This is due to the fact that in LFA case a limited number of modes

are allowed to propagate and it contains inability to account the contributions of

higher order modes of propagation.

Note that the inlet/outlet and expansion chamber of heights ā = 0.15 m and

b̄ = 0.3 m contain cut-on frequencies 301 Hz and 191 Hz, respectively. These

cut-on frequencies have impact on the distribution of energy in frequency regime,

see Fig 4.2. Clearly the transmission increases after cut-on of expansion chamber

appeared at 191 Hz while the reflected energy becomes dominant after the first

cut-on of inlet/ outlet which occurs at 301 Hz. Although the scattering energies

have dips at 80 Hz, 260 Hz and 290 Hz. These dips are due to the trigonometric
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term present in both the reflected and transmitted energies. Fig. 4.2(b) show

the reflected and transmitted energies when the structure is radiated by the fluid-

borne mode (` = 1) which cuts-on at 301 Hz. Clearly, for this case the reflected

energy drops while the transmitting energy raises gradually below the second cut-

on of the expansion chamber that occurs at 657 Hz. As maximum of the energy

is transferring along the boundaries of the expansion chamber below this range.

However when the secondary mode of the expansion chamber becomes cut-on the

maximum of the energy is shifted to fluid and thus reflection is increased (a sudden

inversion in Fig. 4.2(b) is evident).

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.2: Rigid strips: The reflected energy flux Er (N) and transmitted
energy flux Et ( ) against frequency with αh = 3.308 and µh = 2.695.

The scattering of energies against frequency with membrane vertical strips are

depicted in Figs. 4.3–4.5. Each of the figure is dissimilated by the edge conditions

on vertical membranes. The results with MMTG are shown with symbols; the

reflected energy flux (N) and the transmitted energy flux ( ) whilst the dashed

curves delineates the outcomes with LFA. It can be seen that the conserved power

identity is satisfied in whole frequency regime for each set of edge conditions and for

both the structural-borne mode incident (` = 0) and the fluid-borne mode incident

(` = 1). Fig. 4.3 shows the reflected and transmitted energies while the vertical

membrane strips are being fixed tightly with the edges of horizontal membrane.

It is found that when the structure is radiated with structure-born mode, a clear

agreement between MMTG and LFA is in seen before the first cut-on frequency

(301 Hz) of inlet/outlet duct. However this agreement is not good enough in the
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range of second or higher order modes propagation. The fact that LFA deviates

due to its inability to cater the information from the propagation of higher order

modes. Similar behavior is prompted while the vertical membrane strips are being

free (see Fig. 4.4(a)) or contain spring-like (see Fig. 4.5(a)) connections with

horizontal membrane. Moreover, the overall scattering performance of vertical

membrane strips in structure-born mode case resembles closely with the rigid

vertical strips. However the presence of bridging membrane becomes apparent,

when the structure is radiated with fluid-born mode. Note that this mode cuts-on

at frequency 301 Hz. A significant variation in in scattering energies with change

of edge conditions is noted which become more prominent after the secondary cut-

on frequency of expansion chamber 657 Hz. The inversion of scattering energies

with dips is evident which vary with variation of edge conditions.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.3: Membrane strips containing fixed edges: The reflected energy flux
Er (N) and transmitted energy flux Et ( ) against frequency with αh = 3.308,

µh = 2.695, αv = 3.308 and µv = 2.695.

The performance of an HVAC unit is usually measured in the term of transmission

loss. The formula for transmission loss is: TL = −10 log10(Et), where the incident

power (Ei) is being scaled at unity. Fig. 4.6 shows the transmission loss against

frequency with rigid vertical strips. Both MM results (solid line with arrow) and

LFA results (dashed line) are plotted together for structure-born mode incident.

It is found that both the approaches show a good agreement (see Fig. 4.6(a)). A

dome-like behavior is seen in frequency range 0-80 Hz and a stop-band is produced

prior to the first cut-on of inlet/outlet in frequency range 82-265 Hz with band
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(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.4: Membrane strips containing free edges: The reflected energy flux
Er (N) and transmitted energy flux Et ( ) against frequency with αh = 3.308,

µh = 2.695, αv = 3.308 and µv = 2.695.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.5: Membrane strips containing spring-like edges: The reflected en-
ergy flux Er (N) and transmitted energy flux Et ( ) against frequency with

αh = 3.308, µh = 2.695, αv = 3.308 and µv = 2.695.

width 3.23. It clearly reveals a high transmission loss for low frequency range of

noise. But once the new mode starts propagating the TL falls rapidly. Neverthe-

less, the TL peaks occur before the cut-on modes of the duct regions located at

191 Hz, 301 Hz and 657 Hz.

Fig. 4.6(b) indicates the TL against frequency when the considered configuration

is radiated by the fluid-born mode. The stop-band produced here are in frequency

range 468-492 Hz with a small band width of 1.05. It occurs before the new cut-

on frequency of the expansion chamber. More stop-bands with small pass-band

are produced after the new cut-on in the frequency range 623-860 Hz. Whereas,
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the non-periodic variation in peaks at frequencies 482 Hz, 664 Hz, 812 Hz and

865 Hz represents the attenuation of the higher order modes, especially at high

frequencies.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.6: Rigid strips: Transmission loss against frequency with αh = 3.308
and µh = 2.695.

TL through the wave-bearing cavity bridged by vertical membrane strips is shown

in Figs. 4.7–4.12. The material properties of these vertical membranes and the

membrane bounding the cavity horizontally are taken to be identical by using:

αh = αv = 3.308 and µh = µv = 2.695 as well as different by considering:

αh = 3.308, αv = 0.94 and µh = 2.694, µv = 1.44. Moreover, the edge condi-

tions of vertical membranes are assumed to fixed, free or spring-like. The results

obtained via MMTG (line with arrow head) are compared with LFA (dashed lin-

ing) for structure-born mode incident only, wherein a good agreement in results

is observed in low frequency regime. Whereas, for higher frequencies the LFA

deviates due to its inability to account the contribution from higher order modes

of wave propagation.

Figs. 4.7 and 4.8 show TL against frequency with fixed edge conditions. A dome-

like behavior in frequency range 0-79 Hz and a stop-band with band width of

3.076 in the frequency range 79-243 Hz is found, while the structure-borne mode

is incident and material properties of bounding cavity are homogeneous (see Fig.

4.7(a)). However, by taking different material properties of horizontal and verti-

cal membranes, a significant variation in attenuation is noted. More attenuation

with heterogeneous properties of bounding cavity is revealed (see Figs. 4.7(a) and
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4.8(a)). Likewise, behavior is evident for the case of fluid-borne mode incident

(see Figs. 4.7(b) and 4.8(b)).

Also it is found that sound reduction in all the domes of frequencies of the vertical

membranes placed at zero displacement is much more than the case of vertical

rigid strips.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.7: Membrane strips containing fixed edges: Transmission loss against
frequency for αh = αv = 3.308 and µh = µv = 2.695.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.8: Membrane strips containing fixed edges: Transmission loss against
frequency for αh = 3.308, αv = 0.94, µh = 2.694 and µv = 1.44.

Figs. 4.9 and 4.10 show the graphical results when the vertical membranes of

cavity are free to move at edges and the horizontal membranes are fixed tightly

with edges. The material properties of both type of membranes are identical.

In Figs. 9a and 10a, a wide stop-band with narrow pass-band in low frequency
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regime < 300Hz is found, while the configuration is radiated through structure-

borne mode. A leakage of compressional waves with free edges is evident (see Figs.

4.9(a) and 4.10(a) ).

Furthermore, the highest TL peak with heterogeneous membranes (81.37 dB at

269 Hz in Fig 9b) is greater than that of homogeneous membranes (62.59 dB at

146 Hz in Fig 4.9(a)). However, when the configuration is radiated by the fluid-

borne mode, the TL peaks of 19.38 dB, 18.52 dB and 27.24 dB respectively occur

at 384 Hz, 494 Hz and 674 Hz for homogeneous membranes of cavity, whereas,

these peaks are 22.42 dB, 24.98 dB and 18.96 dB at 535 Hz, 672 Hz and 718 Hz for

heterogeneous case. These peaks are due to the harmonic resonance of the cavity.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.9: Membrane strips containing free edges: Transmission loss against
frequency for αh = αv = 3.308 and µh = µv = 2.695.

The effects of spring like edge conditions of vertical membranes of cavity on TL

against frequency are depicted in Figs. 4.11 and 4.12. The coupling constants

ξ̄a and ξ̄b are assumed to be unity. The peaks in TL curve seen in Figs. 11a

are 55.25 dB, 35 dB, 18.57 dB and 27.8 dB which occur at frequencies 146 Hz,

364 Hz, 496 Hz and 675 Hz, respectively. Nevertheless, such peak values are 31.9

dB, 18.1 dB, 17.45 dB and 21 dB with fluid-borne radiation (see Fig. 4.9(b)).

However the results of spring like edges resemble closely with free edges because

the compressional waves lose energy at the edges. Moreover, the tuning of the



80

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.10: Membrane strips containing free edges: Transmission loss against
frequency for αh = 3.308, αv = 0.94, µh = 2.695 and µv = 1.44.

component in given frequency regime can be adjusted by changing the material

properties of walls. Furthermore, the MMTG and LFA curves contain a little

variation at about every new cut-on of the cavity or expansion chamber. The fact

leads to the inability of LFA to cater the contribution from every new propagating

mode. Since the eigenvalues changes from imaginary to positive real value.

(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.11: Membrane strips containing spring like edges: Transmission loss
against frequency for αh = αv = 3.308 and µh = µv = 2.695.

In next Figs. 4.13–4.14, the matching conditions are reconstructed form the

truncated form Mode-Matching solution at f = 350Hz, while, the dimensional

heights and half length of the chamber are fixed at ā = 0.06 m, b̄ = 0.085 m and
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(a) Structure-borne mode incident (` = 0). (b) Fluid-borne mode incident (` = 1).

Figure 4.12: Membrane strips containing spring like edges: Transmission loss
against frequency for αh = 3.308, αv = 0.94, µh = 2.695 and µv = 1.44.

(a) Real parts of pressure (b) Imaginary parts of pressure

Figure 4.13: The real and imaginary parts of pressure against duct height
with N = 50 terms.

L̄ = 0.01 m, respectively. It can seen that the real and imaginary parts of pres-

sures of the inlet and expansion chamber match exactly at x = −L as assumed

in (4.15), see Fig. 4.13. Likewise, the matching of normal velocities perceived for

vertical membrane case is shown in Fig. 4.14. Note that the displacement along

the vertical membrane found through Galerkin procedure matches accurately with

normal velocities at x = −L.

Similar observations for anti-symmetric case are obtained. It clearly validate the

MM solution as well as authenticate the accuracy of performed algebra.
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(a) Real parts of velocities (b) Imaginary parts of velocities

Figure 4.14: The real and imaginary parts of normal velocities against duct
height with N = 50 terms.

Note that there appeared some oscillations in normal velocities curves due to

Gibb’s phenomenon [103]. We used Lanczos filter as given in [102], and then

performed computations to get the plots of Figs. 4.13 and 4.14.

The issue is addressed comprehensively for elastic plate case [114] and then for

membrane case in [119] and [102].



Chapter 5

Silencing Performance Analysis of

a Membrane Cavity with

Different Edge Conditions

5.1 Introduction

The modeling of fluid-structure coupled waves through the elastic structures bound-

ing the fluid space and their scattering form geometric and material discontinuities

is challenging as well as interesting, and have gained much attention of engineers

and scholars. Such problems are commonly found in acoustics, elasticity, wa-

ter wave theory, and aero-dynamics etc. The problems involving the interaction

between the surface vibrations and sound field inside of cavity regions have appli-

cation in noise control of heating, ventilation and air conditioning (HVAC) system

of buildings, aero-engines and other engineering structures [104–110].

This chapter is concerned with the scattering analysis of the cavity region which

has elastic membrane walls and contains compressible fluid. This flexible cavity

is connected with extended inlet and outlet which are bounded by elastic plates.

The particular interest of the authors is to establish a new form of Mode-Matching

83
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tailored-Galerkin (MMTG) approach which comprises the general description to

define a variety of edge conditions of bridging membranes. The proposed tech-

nique is a simple and computationally more effective way as compared with the

technique as suggested in [120]. The response along the vertical components is

taken such that the homogeneous part of the governing equations whereas their

non-homogeneous parts link the fluid-space vibrations. To compare the results

achieved with MMTG, the Mode-Matching Galerkin (MMG) approach as sug-

gested by Lawrie and Afzal [120] is developed. The MMG basically relies on a

priori solutions that can be chosen to be the orthogonal basis eigenfunctions along

the vertical boundaries, for instance see [121–123].

The chapter is arranged as follows. The description of the physical problem and

governing boundary value problem is given in Section 2. The Mode-Matching so-

lution of the problem is stated in Section 3. The tailored Galerkin and Galerkin

approaches are explained in Sections 4 and 5, respectively. The numerical results

are explained in Section 5, whereas, the concluding remarks are portrayed in Sec-

tion 6.

5.2 Problem Formulation

Consider a waveguide containing elastic plates bounded inlet/outlet and a mem-

brane chamber membrane are lying along ȳ = ā, |x̄| > L̄ and ȳ = b̄, |x̄| < L̄,

respectively, in a dimensional setting (overbars represent dimensional variables).

The lower surface of the waveguide located at ȳ = 0̄ is acoustically rigid. Two

vertical elastic membranes lying along x̄ = ±L̄, ā ≤ ȳ ≤ b̄ are connected to the

horizontal membrane at (x̄, ȳ) = (±L̄, b̄). The other ends of the membranes are

connected to the elastic plates at (x̄, ȳ) = (±L̄, ā). Note that the bars on quantities

here and henceforth express the dimensional setting of coordinates. A compress-

ible fluid of mass density ρ and sound speed c is filled inside of the waveguide.

The physical configuration of the waveguide is shown in Fig. 5.1 The harmonic

time dependence exp (−iωt̄), where ω = 2πf is radiant frequency in which the
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Figure 5.1: The physical configuration of waveguide.

frequency f is measured in Hz, is suppressed throughout and the boundary value

problem, which is made dimensionless by using length scale k−1 and time scale

ω−1.

The non-dimensional fluid potential ψj(x, y) satisfy the Helmholtz’s equation

(∇2 + 1)ψj(x, y) = 0, , (5.1)

where j = 1, 2, 3 denote the fluid potential in extended inlet, outlet and expansion

chamber. For rigid wall at y = 0, ∂ψj/∂y = 0, whilst for the horizontal elastic

membrane and plates surfaces, the conditions are:

{ ∂
2

∂x2
+ µ2

M}
∂ψ2

∂y
+ αMψ2 = 0, y = b, (5.2)

(
∂4

∂x4
− µ4

p

)
∂ψq
∂y
− αpψq = 0, y = a, where q = 1, 3. (5.3)

Note that in (5.2) the quantities µM and αM defined by

µM = c/cm and αM = ρω/(TK3),
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are the dimensionless membrane wave number and the fluid loading parameter,

respectively containing membrane mass density cm and tension T . Accordingly, in

(5.3) αp and µp respectively, the plate wave number and fluid loading parameter

are defined by

αp =
12(1− ν2)c2ρ

k3h3E
and µp =

12(1− ν2)c2ρp
k2h2E

.

The quantity E represents the Young’s modulus of plate having thickness h, den-

sity ρp and Poisson’s ratio ν. Moreover, two bridging membranes situated at the

junctions can be expressed by

{ ∂
2

∂y2
+ µ2

M}
∂ψ

∂x
± αMψ = 0, x = ±L, a 6 y 6 b. (5.4)

Furthermore, some physical conditions are applied at the edges of the plates and

membranes, such as clamped, pin-jointed etc., in elastic plate case and fixed free

or spring-like in elastic membrane case. Lawrie in [62] proved that the number of

edge conditions will be half of the even order derivatives present in the membrane

or plate condition.

Therefore, there will be one edge condition on each finite membrane edge and two

conditions on finite plate edge. These conditions will be defined later.

5.3 Problem Formulation

The physical configuration includes flexible surfaces that support energy propa-

gation along the boundaries as well as through the fluid, and hence there exist a

coupling between fluid and structure vibrations.

The eigenvalue problems associated with Helmholtz’s equation together with rigid

and plate or membrane boundaries govern eigenfunctions Ψ1(βn, y) = cosh(βny)

in elastic plate bounding regions (extended inlet/outlet)and Ψ2(γn, y) = cosh(γny)

in elastic membrane bounding region (central region or expansion chamber). The

eigenvalues (βn, γn) are the roots of dispersion relations:
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κ1(β) = (β4 + 2β2 + 1− µ4
p)β sinh(βa)− αp cosh(βa) = 0. (5.5)

κ2(γ) = (γ2 + 1− µ2
M)γ sinh(γb)− αM cosh(γb) = 0. (5.6)

These roots cab be found numerically and contain properties given in [113]. The

corresponding eigenfunctions satisfy generalized orthogonality relations:

αp

∫ a

0

Ψ1(βm, y)Ψ1(βn, y)dy = δmnEm − (β2
m + β2

n + 2)Ψ
′

1(βm, a)Ψ
′

1(βn, a), (5.7)

αM

∫ b

0

Ψ2(γm, y)Ψ2(γn, y)dy = δmnHm −Ψ
′

2(γm, b)Ψ
′

2(γn, b), (5.8)

where δmn is the Kronecker delta function and:

Em = 2(β2
m + 1)[Ψ

′

1(βm, a)]2 + αp

∫ a

0

Ψ2
1(βm, y)dy, (5.9)

Hm =
αMb

2
+

(
3γ2

m + 1− µ2
M

2γ2
m

)(
Ψ

′

2(γm, b)
)2

. (5.10)

Now to include the response of the membranes lying at Z = ±L along a < y < b

one may adopt the 1) Galerkin approach, or 2) Tailored-Galerkin approch. Both

techniques are discussed in subsequent subsection.

5.3.1 Galerkin Formulation

The fundamental of this approach is the assumption of the priori solution along the

boundaries, and then the assortment of the complete solution with this solution.

The membrane displacements w±(y) along the boundaries satisfy:

{ ∂
2

∂y2
+ µ2

M}w±(y) = ∓αMψ2, x = ±L, a 6 y 6 b. (5.11)
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One way to express the membrane displacements is by using the Fourier series

assumption, that gives:

w±(y) =
∞∑
n=0

G±nYn(y), (5.12)

where Yn(y), n = 0, 1, 2 . . . represent the eigenfunctions and G±n , n = 0, 1, 2 . . .

are Fourier coefficients. The value of nth eigenfunction Yn(y) depends upon the

physical conditions imposed at the edges of membranes lying along a 6 y 6 b.

These edges can be fixed, free or spring like. The spring-like conditions on all

edges is comparatively a general case and be expressed mathematically as:

ξ1Yn(a) + Y ′n(a) = 0, (5.13)

ξ2Yn(b) + Y ′n(b) = 0. (5.14)

On solving the eigenvalue equation of (5.11) subject to (5.13)-(5.14), we find

Yn(y) = ξ1 sin[λn(y − a)] + λn cos[λn(y − a)] having eigenvalues to be the roots

of characteristic equation

(ξ1ξ2 − λ2
n) sin[λn(b− a)] + (ξ1 + ξ2)λn cos[λn(b− a)] = 0, n = 0, 1, 2 . . . .

These roots can be found numerically. The associated eigenfunctions Yn, n =

0, 1, 2, .. are orthogonal and satisfy the orthogonality relation:

∫ b

a

Yn(y)Ym(y)dy = δmnHn, (5.15)

where

Hn =

∫ b

a

Y 2
n (y)dy. (5.16)

Note that the Fourier coefficients G±n are still unknowns. To determine these we

match surface modes with cavity modes with the aid of (5.11). The propagating

modes in duct regions can be expressed by:

ψ1(x, y) = F`Ψ1(β`, y)eiη`(x+L) +
∞∑
n=0

AnΨ1(βn, y)e−iηn(x+L), x < −L, (5.17)
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ψ2(x, y) =
∞∑
n=0

(Bne
isnx + Cne

−isnx)Ψ2(γn, y), |x| < L, (5.18)

ψ3(x, y) =
∞∑
n=0

DnΨ1(β1, y)eiηn(x−L), x > L, (5.19)

where ηn =
√
β2
n + 1 and sn =

√
γ2
n + 1 are the wave numbers. Note that the

first term in (5.17) represents incident wave having forcing F` =
√
αp/(E`η`).

The counter ` is 0 or 1 to describe the fundamental mode or the secondary mode

incident, respectively. Now to find Fourier coefficients G±n , we substitute (5.12) and

(5.18) into (5.11), multiplying the resulting with Ym(y), integrating over a < y < b,

and then applying (5.15), it is found that

G±m = ± ±αM
Hm(µ2

M − λ2
m)

∞∑
n=0

(Bne
∓isnL + Cne

±isnL)Imn, (5.20)

where

Imn =

∫ b

a

Ym(y) cosh(γny)dy. (5.21)

5.3.2 Tailored-Galerkin Formulation

In this approach, the surface modes of vertical membranes are found through the

solution the membrane equations and satisfy the edge conditions. To determine

the surface modes, we solve (5.11), to get

w±(y) = a±1 cos(µMy) + a±2 sin(µMy)± αM
∞∑
n=0

(
Bne

∓isnL + Cne
±isnL

)
cosh(γny)

γ2
n + µ2

M

,

(5.22)

Here quantities a±j , j = 1, 2 are constants that will be found through the physical

behavior of vertical membranes on edges x = ±L, that for general setting are:

ξ1w
±(a) +

∂w±

∂y
(a) = 0, (5.23)

ξ2w
±(b) +

∂w±

∂y
(b) = 0. (5.24)
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By substituting (5.22) into (5.23) and (5.24), a system of four equations is found.

This system can be solved simultaneously for unknowns a±j , j = 1, 2.

Note that the modal amplitudes {Am, Bm, Cm, Dm}; m = 0, 1, 2, . . . in the eigen-

function expansions defined by (5.17)–(5.19) are still unknowns. These are deter-

mined after using the matching conditions at the interfaces x = ±L.

5.4 Mode Matching Solutions

To find the unknown modal coefficients, the pressures and normal velocities across

the regions are matched on interfaces. At interfaces x = ±L, the continuity of

pressures that give ψ1(−L, y) = ψ2(−L, y) and ψ3(L, y) = ψ2(L, y), leads to

αp

∫ a

0

ψ1(−L, y)Ψ1(βm, y)dy = αp

∫ a

0

ψ2(−L, y)Ψ1(βm, y)dy, (5.25)

αp

∫ a

0

ψ3(L, y)Ψ1(βm, y)dy = αp

∫ a

0

ψ2(L, y)Ψ1(βm, y)dy. (5.26)

On substituting the eigenfunction expansion (5.17)–(5.19) into (5.25)–(5.26), sim-

plify with the aid of OR (2.5), after some rearrangements we get

Am = −F`δm`E`
Em

+
βm sinh(βma)

Em
(J1+(β2

m+2)J2)+
αp
Em

∞∑
n=0

(Bne
−isnL+Cne

isnL)Rmn,

(5.27)

Dm =
βm sinh(βma)

Em
(J3 +(β2

m+2)J4)+
αp
Em

∞∑
n=0

(Bne
isnL+Cne

−isnL)Rmn,

(5.28)

where J1 = ψ1yyy(−L, a), J2 = ψ1y(−L, a), J3 = ψ3yyy(L, a) and J4 = ψ3y(L, a)

are constants. These constants are determine from the physical condition being

applied on the finite joints of horizontal plates at (±L, a), and

Rmn =

∫ a

0

Ψ1(βm, y)Ψ2(γn, y)dy. (5.29)
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On adding and subtracting (5.27) and(5.28), we get

Ψ+
m = −F`δm`E`

Em
+
βm sinh(βma)

Em
(J+

13 + (β2
m + 2)J+

24) +
2αp
Em

∞∑
n=0

χ+
m cos(snL)Rmn,

(5.30)

and

Ψ−m = −F`δm`E`
Em

+
βm sinh(βma)

Em
(J−13 + (β2

m + 2)J−24)− 2iαp
Em

∞∑
n=0

χ−m sin(snL)Rmn,

(5.31)

where Ψ±m = Am±Dm and χ±m = Bm±Cm m=0,1,2,. . . represent the amplitudes of

symmetric/anti-symmetric modes propagating in inlet/outlet and the expansion

chamber, respectively. Whereas, the quantities J±13 = J1 ± J3 and J±24 = J1 ± J4

are obtained edge conditions that are discussed in next subsections.

5.4.1 Clamped Edge Conditions

The clamped connection of elastic plates at joints refers zero displacement and

zero gradient at the edges (x, y) = (±L, a), that gives

ψ1y(−L, a) = 0 ψ1xy(−L, a) = 0, (5.32)

ψ3y(L, a) = 0 ψ3xy(L, a) = 0. (5.33)

Here the subscript x and y represent the partial derivatives with respect to x and

y, respectively. On substituting (5.32)–(5.33) into (5.30)–(5.31) it is found, after

a little rearrangement, that J+
24 = 0, J−24 = 0 and

J+
13 =

2F`η`β` sinh(β`a)

S1

− 2αp
S1

∞∑
n=0

∞∑
m=0

Ψ+
nβmηm cos(snL) sinh(βma)Rmn

Em
(5.34)

J−13 =
2F`η`β` sinh(β`a)

S1

+
2iαp
S1

∞∑
n=0

∞∑
m=0

Ψ−nβmηm sin(snL) sinh(βma)Rmn

Em
, (5.35)

where

S1 =
∞∑
m=0

ηmβ
2
m sinh2(βma)

Em
. (5.36)
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5.4.2 Pin-jointed Edge Conditions

The pin-jointed or simply supported conditions of elastic plates at joints refer zero

displacement and zero bending moment at the edges (x, y) = (±L, a), that gives

ψ1y(−L, a) = 0 and ψ1xxy(−L, a) = 0. (5.37)

ψ3y(L, a) = 0 and ψ3xxy(L, a) = 0. (5.38)

On substituting (5.32)–(5.33) into (5.37)–(5.38) it is found, after some rearrange-

ment, that J+
24 = 0, J−24 = 0 and

J+
13 = −2αp

S2

∞∑
n=0

∞∑
m=0

Ψ+
nβmη

2
m cos(snL) sinh(βma)Rmn

Em
(5.39)

J−13 =
2iαp
S2

∞∑
n=0

∞∑
m=0

Ψ−nβmη
2
m sin(snL) sinh(βma)Rmn

Em
, (5.40)

where

S2 =
∞∑
m=0

η2
mβ

2
m sinh2(βma)

Em
. (5.41)

Now we apply the continuity of normal velocities to match the velocity modes at

x = ±L. At aperture interfaces between 0 < y < a the normal velocities across the

regions are same, but at the membrane interfaces between a < y < b the normal

velocities of cavity modes are equal to the displacements of membranes, that give

ψ2x(x, y) =

ψ1x(x, y), x = −L, 0 6 y 6 a

w+(y), x = −L, a 6 y 6 b

(5.42)

ψ2x(x, y) =

ψ3x(x, y), x = L, 0 6 y 6 a

w−(y), x = L, a 6 y 6 b,

(5.43)

As the formulation of w±(y) is given with Galerkin approach and tailored-Galerkin

approach, therefore the matching conditions (5.42)-(5.43) lead to two sets of equa-

tions. For tailored-Galerkin approach, we substitute (5.17)–(5.19) into (5.42)–(5.43),
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multiplying by αMΨ2(γm, y), integrating over 0 to b, it is found that:

∞∑
n=0

(Bne
−isnL − CneisnL)snαM

∫ b

0

Ψ2(γm, y)Ψ2(γn, y)dy =

αMF`η`

∫ a

0

Cosh(βny)Ψ2(γm, y)dy − αM
∞∑
n=0

Anηn

∫ a

0

cosh(βny)Ψ2(γm, y)dy

− iαMa1

∫ b

a

cos(µMy)Ψ2(γm, y)dy − iαMa2

∫ b

a

sin(µMy)Ψ2(γm, y)dy−

iαm

∞∑
n=0

(Bne
−isnL + Cne

isnL)

γ2
n + µ2

M

∫ b

a

Ψ2(γm, y)Ψ2(γn, y)dy (5.44)

and

∞∑
n=0

(Bne
isnL − Cne−isnL)snαM

∫ b

0

Ψ2(γm, y)Ψ2(γn, y)dy =

αM

∞∑
n=0

Dnηn

∫ a

0

cosh(βny)Ψ2(γm, y)dy − iαMa1

∫ b

a

cos(µMy)Ψ2(γm, y)dy

− iαMa2

∫ b

a

sin(µMy)Ψ2(γm, y)dy−

+ iαm

∞∑
n=0

(Bne
−isnL + Cne

isnL)

γ2
n + µ2

M

∫ b

a

Ψ2(γm, y)Ψ2(γn, y)dy. (5.45)

The addition and subtraction of these equations, after simplification with the aid

of (5.8) lead to:

χ−m =
1

2smHm cos(smL)
{γm sinh(γmb)E

+
56 + αMF`η`R`m − αM

∞∑
n=0

Ψ−n ηnRnm}

− iαM
2smHm cos(smL)

{a+
13P1m + a+

24P2m + 2αM

∞∑
n=0

χ−n sin(snL)Tnm
γ2
n + µ2

M

} (5.46)

and

χ+
m =

i

2smHm sin(smL)
{γm sinh(γmb)E

−
56 + αMF`η`R`m − αM

∞∑
n=0

Ψ+
n ηnRnm}

+
αM

2smHm cos(smL)
{a−13P1m + a−24P2m + 2αM

∞∑
n=0

χ+
n cos(snL)Tnm
γ2
n + µ2

M

} (5.47)

where
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P1m =

∫ b

a

cos(µMy)Ψ2(γm, y)dy, (5.48)

P2m =

∫ b

a

sin(µMy)Ψ2(γm, y)dy, (5.49)

and

Tmn =

∫ b

a

Ψ2(γn, y)Ψ2(γm, y)dy. (5.50)

Note that in (5.46) and (5.47) there appear unknown constants E±56 which describe

the behavior of membranes bounding the central at edges. For fixed type of edge

conditions (ψ2y(±L, b) = 0), the following systems for E±56 are achieved:

E+
56S3 =αM

∞∑
m=0

γm sinh(γmb) tan(smL)

2smHm

{−F`η`R`m +
∞∑
n=0

Ψ−n ηnRnm}

+ αM

∞∑
m=0

γm sinh(γmb) tan(smL)

2smHm

{ia+
13P1m + ia+

24P2m}

+ α2
M

∞∑
m=0

γm sinh(γmb) tan(smL)

smHm

{
∞∑
n=0

χ−n sin(snL)Tmn
γ2
n + µ2

M

}, (5.51)

and

E−56S4 =αM

∞∑
m=0

γm sinh(γmb) cot(smL)

2smHm

{−F`η`R`m +
∞∑
n=0

Ψ+
n ηnRnm}

+ αM

∞∑
m=0

γm sinh(γmb) cot(smL)

2smHm

{ia−13P1m + ia−24P2m}

+ iα2
M

∞∑
m=0

γm sinh(γmb) cot(smL)

smHm

{
∞∑
n=0

χ+
n cos(snL)Tmn
γ2
n + µ2

M

}, (5.52)

where

S3 =
∞∑
m=0

[γm sinh(γmb)]
2 tan(smL)

2smHm

, (5.53)

and

S4 =
∞∑
m=0

[γm sinh(γmb)]
2 cot(smL)

2smHm

. (5.54)

In this wave we get two systems of equations defined by (5.30)-(5.31) and (5.46)-

(5.47) along with (5.51)-(5.52). First these are truncated then are solved numer-

ically. This procedure is termed as mode-matching tailored Galerkin (MMTG).
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Accordingly, the displacements found through Galerkin procedure can be used in

normal velocity conditions. Hence, we substitute (5.17)–(5.19) into (5.42)–(5.43),

multiply with αMΨ2(γm, y), integrate from 0 to b, then use OR (5.8), after some

mathematical rearrangements, one can get:

χ−m =
γm sinh(γmb)J

+
56

2smHm cos(smL)
+

αM
2smHm cos(smL)

{F`R`m −
∞∑
n=0

Ψ−mηnRnm}

− 2α2
M

smHm cos(smL)

∞∑
j=0

∞∑
q=0

χ−q cos(sqL)IqmIjm

(b− a)(µ2
M − λ2

j)
, (5.55)

and

χ+
m =

γm sinh(γmb)J
−
56

2ismHm sin(smL)
+

αM
2ismHm sin(smL)

{F`R`m −
∞∑
n=0

Ψ+
n ηnRnm}

− 2α2
M

smHm sin(smL)

∞∑
j=0

∞∑
q=0

χ+
q cos(sqL)IqmIjm

(b− a)(µ2
M − λ2

j)
. (5.56)

Before truncating and solving the system we use the edge conditions to determine

values of J±56. Therefore we multiply (5.55) by γm sin(smL) sinh(γmb) and (5.56)

by γm cos(smL) sinh(γmb), take summation over m, then by using edge conditions

ψ2y(±L, b) = 0, after some rearrangements it is found that:

J+
56S3 =αM

∞∑
m=0

γm sinh(γmb) tan(smL)

2smHm

{−F`R`m +
∞∑
n=0

Ψ−n ηnRnm}

+ 4α2
M

∞∑
j=0

∞∑
m=0

∞∑
q=0

γm sinh(γmb) tan(smL)χ−q sin(sqL)IqjIjq

smHm(γ2
n + µ2

M)(b− a)(µ2
M − λj)2

, (5.57)

and

J−56S4 =αM

∞∑
m=0

γm sinh(γmb) cot(smL)

2smHm

{−F`R`m +
∞∑
n=0

Ψ+
n ηnRnm}

+ 4iα2
M

∞∑
j=0

∞∑
m=0

∞∑
q=0

γm sinh(γmb) cot(smL)χ+
q sin(sqL)IqjIjq

smHm(b− a)(µ2
M − λj)2(γ2

n + µ2
M)

. (5.58)

Thus for membrane vertical strips the Mode-Matching procedure in conjunc-

tion with Galerkin approach (MMG) yields two systems of equations defined by

(5.18)–(5.19) and (5.55)–(5.56) along with (5.57)-(5.58). First, we truncate the



96

systems of equations for different set of edge conditions imposed on vertical mem-

brane strips and then solved numerically. The unknown amplitudes An, Bn, Cn

and Dn are found easily after a little calculations.

5.5 Numerical Results and Discussion

The performance of a reactive device is generally measured by using transmission

loss (TL). For unit incident power the expression for TL as given in [16] is

TL = −10 log10(Et), (5.59)

where Et represents the transmitted energy flux/power in the outlet region. The

linear algebraic systems obtained in Sections 4 and 5 are truncated first upto

N terms, and then are solved numerically. Here the results obtained from the

truncated solutions are shown in terms of TL. To perform numerical experiments,

density ρ = 1.2043kgm−3, sound speed c = 344ms−1, aluminum elastic plates

with thickness h̄ = 0.0006m and plate mass density ρp = 2700kgm−3 remain

fixed. The numerical values of Poisson’s ratio ν = 0.34 and Young’s modu-

lus E = 7.2 × 1010Nm−2 are considered. The cavity chamber contains stainless

steel having density ρm = 0.1715kgm−2 and tension T = 350N . The height and

chamber half length in dimensional form are b̄ = 0.085m and L̄ = 0.01m, re-

spectively, whilst, the inlet/outlet duct height ā = 0.06m is assumed. In Figs.

5.2–5.10, the curves are plotted by truncating and inverting the solution obtained

with mode-matching tailored Galerkin (MMTG) approach and mode-matching

Galerkin (MMG) approach by fixing N = 20 terms. The curves shown with sym-

bols  −for clamped and �−for pin-joint edges} have been achieved with MMTG

solution whilst the curves shown with dashing depict the results found through

MMG solution. Note that the parametric setting resembles with the setting con-

sidered by Lawrie and Afzal in [81].

The parts (a) of Figs. 5.2–5.10 show the transmission loss against frequency with

structure-born mode (` = 0) excitation, whereas, the parts (b) of Figs. 5.2–5.10
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(b) Fluid-borne mode incident (` = 1).

Figure 5.2: TL verses frequency having fixed edges of vertical membranes
and comprising elastic plates with ( � − pin-jointed and  − clamped edge

conditions).
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Figure 5.3: TL verses frequency with fixed and free edges of vertical mem-
branes and comprising elastic plates with ( �− pin-jointed and  − clamped

edge conditions).

depict the transmission loss results against frequency with fluid-born mode (` = 1)

excitation. The graphs of Fig. 5.2 are achieved by taking zero displacement at

the edges of vertical membranes. It is seen that the majority of structure-borne

mode excitation propagates along the structure and reveals a dome-like behavior

in the frequency range 2 Hz 6 f 6 190 Hz. Moreover, a stopband before the

cut-on frequency 191Hz of inlet and outlet is produced. However, after this cut-on

limit, the TL escalates by increasing frequency. In other words, the addition of

cut-on modes causes more attenuation. But when we interchange the clamped
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edges with the pin-jointed edges, the TL is enhanced. It is because of the leakage

of compressional waves with zero bending moment on the edges. The TL verses

frequency with fluid-borne excitation which cuts-on at f = 191 Hz is shown in

Fig. 5.2(b). It is interesting to see that, the variation of edge conditions from

clamped to pin-jointed does not affect the acoustical performance. The reason

behind is the propagation of majority of the energy via fluid with fluid-borne

excitation. Accordingly, a stopband having band width ratio of 1.14 in frequency

regime 730− 840 Hz is produced. Whereas, the maximum value of TL 30.2 dB at

frequency 765 Hz is achieved.
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Figure 5.4: TL verses frequency with fixed and spring like edges of ver-
tical membranes and comprising elastic plates with ( � − pin-jointed and

 − clamped edge conditions).

Fig. 5.3 show TL verses frequency with zero displacement conditions (ξ1 =∞) at

edges (x, y) = (±L, a) and having zero gradient (ξ2 = 0), at edges (x, y) = (±L, b).

In case of structure-borne mode incident the dome-like behavior in frequency range

2 6 f 6 180 Hz is seen. The transmission loss peak 52.1dB occurred at 443Hz

before the second cut-on frequency of the expansion chamber at 453 Hz. Also a

fixed TL of 20 or (23) dB for clamped or (pin-jointed) respectively, is seen after

the second cut -on frequency of the expansion chamber in the increasing frequency

regime, see Fig. 5.3(a). In Fig. 5.3(b), when system is radiated with fluid-borne

mode, the maximum TL is 36 dB at 392 Hz before the second cut-on frequency of

the expansion chamber and the stopband here is produced in frequency range of
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Figure 5.5: TL verses frequency with free and fixed edges of vertical mem-
branes and comprising elastic plates with ( �− pin-jointed and  − clamped

edge conditions).

350−430 Hz with a band width of 1.02 cm. Fig. 5.4 contains TL verses frequency
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Figure 5.6: TL verses frequency with free edges of vertical membranes and
comprising elastic plates with ( �− pin-jointed and  − clamped edge condi-

tions).

comprising zero displacement condition (ξ1 = ∞) at edges (x, y) = (±L, a) and

spring-like edge conditions (ξ2 = 1) at (x, y) = (±L, b). The peak value of TL,

the stopbands and dome-like behavior are same as that produced in Fig. 5.3. The

effect of clamped and pin-jointed edges of the expanded inlet/outlet on the TL

is significant in case of fundamental mode incident (` = 0), however this effect is

negligible when the structure is vibrated with higher order mode (` = 1) see each
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Fig (a) and (b). It is due to the fact that for higher order mode (` = 1) the edges of

expended inlet/outlet do not affect the transmission loss curves. Fig. 5.5 shows TL
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Figure 5.7: TL verses frequency with free and spring like edges of ver-
tical membranes and comprising elastic plates with ( � − pin-jointed and

 − clamped edge conditions).

verses frequency having zero gradient conditions (ξ1 = 0) at edges (x, y) = (±L, a)

and zero displacement edge conditions (ξ2 = ∞) at (x, y) = (±L, b). The peak

value of TL is 44.4dB at 425 Hz, the stopbands and dome-like behavior are same

as that produced in Fig. 5.3. The effect of clamped and pin-joint edges of the

expanded inlet/outlet on the TL is significant in case of fundamental mode incident

(` = 0), however this effect is negligible when the structure is vibrated with higher

order mode (` = 1) see each Fig (a) and (b). It is due to the fact that for

higher order mode (` = 1) the edges of expended inlet/outlet do not affect the

transmission loss curves. From Figs. 5.2–5.10, it is clear that when structure is

radiated the TL curves obtained from both MMTG and MMG are exactly matched

in all frequency regime for each set of edge conditions.

Fig. 5.6 portrays the TL verses frequency whereas both the vertical membrane

are free to move on edges (x, y) = (±L, a) and (x, y) = (±L, b) that is (ξ1 = 0)

and (ξ2 = 0). The behavior of curves obtained for fundamental mode incident

(` = 0) is in resemblance with zero displacement curves of Fig. 5.2(a) but with

increases transmission loss. However, in Fig. 5.6(b) the peak value of TL is

26.2dB at first cut-on of the expanded inlet/outlet and then decreasing to its
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Figure 5.8: TL verses frequency with spring like and fixed edges of ver-
tical membranes and comprising elastic plates with ( � − pin-jointed and

 − clamped edge conditions).

minimum for other cut-on frequencies. The effect of clamped and pin-joint edges

of the expanded inlet/outlet on the TL is significant in case of fundamental mode

incident (` = 0), however this effect is negligible when the structure is vibrated

with higher order mode (` = 1) see each Fig (a) and (b). It is due to the fact that

for higher order mode (` = 1) the edges of expended inlet/outlet do not affect the

transmission loss curves. From Figs. 5.2–5.10, it is clear that when structure is

radiated the TL curves obtained from both MMTG and MMG are exactly matched

in all frequency regime for each set of edge conditions. Fig. 5.7 depicts the TL

verses frequency with zero gradient (ξ1 =∞) at edges (x, y) = (±L, a) and spring-

like edge conditions (ξ2 = 1) at (x, y) = (±L, b). In Fig. 5.7(a) the maximum TL

is 40 db at 20 Hz then TL curve is decreases to 9.5 dB when the frequency increases

to first cut-on of the extended inlet and outlet. When frequency approaches the

second cut-on and onward a fixed TL is obtained, for both the curves of pin-jointed

and clamped edges. The maximum TL in Fig. 5.7(b) is 24 dB at the first cut-on of

the extended inlet and outlet and then decreasing up to its minimum in the whole

frequency regime. Fig. 5.8 indicate the TL against frequency with spring like and

fixed edges of the vertical membrane. The maximum TL is 50 dB at frequency

402 Hz is obtained in Fig. 5.8(a) and two stopbands of bandwidth of 20 cm and

1.02 cm respectively, found in frequency ranges 10 ≤ f ≤ 190 and 350 ≤ f ≤ 450.
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Figure 5.9: TL verses frequency with spring like and free edges of ver-
tical membranes and comprising elastic plates with ( � − pin-jointed and

 − clamped edge conditions).
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Figure 5.10: TL verses frequency with spring like edges of vertical membranes
and comprising elastic plates with (� − pin-jointed and  − clamped) edge

conditions.

Additionally, the MMTG and MMG solutions with truncation parameter N = 40

terms are used to plot the pressures and normal velocities at x = ±L, where

f = 1000Hz. Figs. 5.11–5.14 show pressures and normal velocities curves with zero

displacement conditions on membranes edges and clamped conditions on plates

edges.

Parts (a) of Figs. 5.11–5.14 depict the results with MMTG approach and parts

(b) of these figures show the results with MMG approach. From the agreement

of the real and imaginary parts of curves, it is found that the truncated MMTG
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and MMG solutions are efficient enough to reconstruct the matching conditions

as well as justify that the performed algebra is correct.

0.5 1.0 1.5
y

0.030

0.035

0.040

0.045

0.055

0.060

0.065

ÂeIΨ jM

Âe@Ψ1D
Âe@Ψ2D

MMTG

(a) Real parts of pressure
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Figure 5.11: The real parts of pressures against duct height obtained via
MMTG and MMG approaches with N = 40.
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(b) Imaginary parts of pressure

Figure 5.12: The imaginary parts of pressures against duct height obtained
via MMTG and MMG approaches with N = 40.

Hence, the reconstruction of interface conditions by the truncated forms of MMTG

and MMG solutions along with the satisfaction of laws of conservation of energies

with a limited number of modes,

proves that the techniques adopted here, validate these solution altogether.
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Figure 5.13: The real and imaginary parts of normal velocities against duct
height with N = 40 terms.
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Figure 5.14: The real and imaginary parts of normal velocities against duct
height with N = 40 terms.



Chapter 6

Silencing Performance Analysis of

Plate Bounded Cavity with

Different Edge Conditions

6.1 Introduction

This chapter is concerned with the scattering of acoustic waves in a flexible cavity

bounded by elastic plates that is filled with a compressible fluid. This flexible

cavity is connected with extended inlet and outlet which are bounded by elastic

plates. The main interest of the authors in this chapter is to develop a new so-

lution method that enables a wide range of conditions to be applied at the the

edges of the vertical elastic plates without the need to change basis functions. The

Greens function are used to obtain a closed-form expression for the vertical elastic

plates displacement in terms of the the fluid modal amplitudes and this expression

has sufficient degrees of freedom to enable a wide range of edge conditions to be

applied. The comparison of the results achieved with model approach, the Mode-

Matching Galerkin (MMTG) approach as suggested by Lawrie and Afzal [81] is

developed.

The chapter is arranged as follows. The description of the physical problem and

105
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governing boundary value problem is given in Section 2. The Mode-Matching tai-

lored Galerkin solution of the problem is stated in Section 3. The Model approach

are explained in Sections 4. The numerical results are explained in Section 5,

whereas, the concluding remarks are portrayed in Section 6.

6.2 Problem Formulation

The boundary value problem is governed by considering an infinite, two dimen-

sional rectangular waveguide stretched along x̄−direction in dimensional coordi-

nate plane (x̄, ȳ), where over bars denote the dimensional setting of coordinates.

The interior of the cavity is filled with compressible fluid of density ρ and sound

speed c, whereas the outside of it is set into vacou. The lower horizontal wall

of the waveguide is assumed to be acoustically rigid, whilst, the upper horizontal

walls of it are elastic plates.

Two vertical strips lying along x̄ = ±L, ā 6 ȳ 6 b̄ divide the waveguide into three

duct regions i.e., the inlet, the expansion chamber and the outlet. The material

properties of the vertical strips are assumed to be elastic plates. The waveguide

configuration is depicted in Fig. 6.1.

The waveguide structure is exited by a duct mode from the region (∞, −̄L)×(0, ā)

that propagate from negative to positive x̄-direction. The acoustic pressure, Ψ̄ in

term of dimensional acoustic pressure p̄ and acoustic velocity v̄ are found as

p̄ = −ρ∂Ψ̄

∂t̄
and v̄ = ∇̄Ψ̄. (6.1)

Assuming a time harmonic dependence eiωt with angular frequency ω and wave

number k = ω/c we define length scale k−1 and time scale ω−1 so that x = kx̄,

y = kȳ and t = ωt̄ become non-dimensional space and time coordinates. Thanks to

relations in Eq.6.1, the time- harmonic non-dimensional fluid potential, ψ(x, y, ω),
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Figure 6.1: The waveguide configuration where elastic plates are represented
by wavy boundaries.

satisfies the Helmholtz equation:

∇2ψ + ψ = 0. (6.2)

The acoustically rigid and elastics plate boundaries [14] in non-dimensional form

are
∂ψ

∂y
= 0, y = 0, |x| <∞, (6.3)

and

(
∂4

∂x4
− µ4

)
∂ψ

∂y
− αψ = 0, y = a, b, |x| <∞, (6.4)

respectively. The quantities

µ =

(
12(1− ν2)c2ρp

k2h2E

)1/4

and α =
12(1− ν2)c2ρ

k3h3E
(6.5)

are respectively, the in vacau fluid loading parameter and plate wavenumber. Here,
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E, ν and h respectively, are the Young’s modulus, plate density, Poisson’s ratio

and thickness of the plate.

It is easy to verify from (6.2)-(6.4), the eigenvalues in regions (x, y) ∈ R2|L <

|x|, 0 ≤ y ≤ a (inlet/outlet) and (x, y) ∈ R2|L < |x|, 0 ≤ y ≤ b (expansion

chamber) are roots of characteristic equation,

(
(%2 + 1)2 − µ4

)
% sinh(%p)− α cosh(%p) = 0, (6.6)

where % = τ (resp.% = γ) when elastic plates lie along p = a (resp.p = b). when

elastic plate is situated at p = b. These roots are numerically obtained and the

computation of all roots is essential for the successful implementation of MMT

approach.

The reader are refer to [56] for the detail of such roots. The corresponding eigen-

functions Yj(%n, y) := cos(%ny)) in the inlet/outlet (with j = 1, %n = τn) and in

the expansion chamber (with j = 2, %n = γn) are linearly dependent and non-

orthogonal [57].

Accordingly, the use of generalized orthogonality relations is indispensable to pro-

cure a convergent solution, the generalized orthogonality relations for different

duct section are defined as:

α

∫ a

0

Y1(τn, y)Y1(τm, y)dy = Enδmn − (τ 2
m + τ 2

n + 2)Y
′

1 (τm, a)Y
′

1 (τn, a), (6.7)

and

α

∫ b

0

Y2(γn, y)(y)Y2(γm, y)dy = Gnδmn − (γ2
m + γ2

n + 2)Y
′

2 (γm, b)Y
′

2 (γn, b), (6.8)

where

Em =
αa

2
+
αY1(τm, a)Y

′
1m(τm, a)

2τ 2
m

+ 2[(τ 2
m + 1)Y

′

1 (τm, a)]2 (6.9)

and

Hm =
αb

2
+
αY2(γm, b)Y

′
2 (γm, b)

2γ2
m

+ 2[(γ2
m + 1)Y

′

2 (γm, b)]
2. (6.10)
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The eigenfunctions Yj(%q, y), j = 1, 2 are linearly dependent [81] and their prop-

erties are mentioned below:

∞∑
q=0

∆jqYj(%q, y) =
∞∑
q=0

%2
q∆jYj(%q, y) = 0, 0 ≤ y ≤ p (6.11)

and
∞∑
q=0

∆2
jqκq = 0,

∞∑
q=0

%2
q∆

2
jqκq = 1, 0 ≤ y ≤ p, (6.12)

where

∆jq =
Y

′
j (%q, p)

κq
, (6.13)

where κ = E (resp. κ = G) for inlet/outlet duct region and expansion chamber

respectively. The Green’s function for the eigenfunctions [81] can be constructed

as

α

∞∑
q=0

Yjq(%q, ν)Yjq(%q, y)

κq
= δ(y − ν) + δ(y + ν) + δ(y + ν − 2), −l ≤ ν, y ≤ l,

(6.14)

this result show smooth function, that converge point-wise and δ(y) is the Dirac

delta function. The MM models having strong singularities at the edges of vertical

elastic boundaries, comprehensively addressed by Lawrie in [122].

6.3 Mode Matching Solution

We assume an ensemble time-independent fluid potential ansataz of the form

ψ(x, y) =


ψ1(x, y), x ≤ −L, 0 ≤ y ≤ a

ψ2(x, y), |x| ≤ L, 0 ≤ y ≤ b

ψ3(x, y), x ≥ L, 0 ≤ y ≤ a

. (6.15)

The eigenfunction expansion of fluid potential for inlet, outlet and expansion cham-

ber takes the form:
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ψ1(x, y) = F`Y1(τ`, y)eiη`(x+L) +
∞∑
n=0

AnY1(τn, y)e−iηn(x+L), (6.16)

ψ2(x, y) =
∞∑
n=0

(
Bne

isnx + Cne
−isnx

)
Y2(γn, y), (6.17)

ψ3(x, y) =
∞∑
n=0

DnY1(τn, y)eiηn(x−L), (6.18)

where An, Bn, Cn and Dn, for n ∈ Z+ are the complex amplitudes of the reflected

and transmitted modes to be determined. The first term on right hand side of

the incident field with force F`. The index ` suggests weather the incident field

consist of fundamental mode or higher mode. The quantities ηn and νn are the

wave numbers and are defined in terms of eigenvalues as τn and γn, as

ηn = (τ 2
n + 1)1/2 νn = (γ2

n + 1)1/2 n ∈ Z, n ≥ 0 (6.19)

The goal of MM is to find the amplitudes An, Bn, Cn and Dn using continuity of

pressure flux and normal velocities at the interfaces x = ±L:

∫ a

0

ψ1(−L, y)Y1(τm, y)dy =

∫ a

0

ψ2(−L, y)Y1(τm, y)dy (6.20)

and ∫ a

0

ψ3(L, y)Y1(τm, y)dy =

∫ a

0

ψ2(L, y)Y1(τm, y)dy. (6.21)

On substituting (6.16)-(6.18) into (6.20) and (6.21) and then normalizing with the

aid of the orthogonality relation (6.7), after simplification we may get

Am = −F`δm` −∆1m{e1 + (τ 2
m + 2)e2}+

α

Em

∞∑
n=0

Rnm

(
Bne

isnL − Cne−isnL
)
, (6.22)

Dm = ∆1m{e3 + (τ 2
m + 2)e4} −

α

Em

∞∑
n=0

Rnm

(
Bne

−isnL − CneisnL
)
, (6.23)

where, ∆1m = τm sinh(τma)/Em. Now by adding (6.22) and (6.23), it is found that
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Am +Dm = −F`δm` −∆1m{(e1 − e3) + (τ 2
m + 2)(e2 − e4)}

+
2α

Em

∞∑
n=0

Rnm cos(snL) (Bn + Cn) . (6.24)

Likewise, the subtraction of (6.22) from (6.23), lead to

Am −Dm = −F`δm` −∆1m{(e1 + e3) + (τ 2
m + 2)(e2 + e4)}

−2iα

Em

∞∑
n=0

Rnm sin(snL) (Bn − Cn) . (6.25)

Then by considering: Φ±m = (Am ± Dm), χ±n = (Bn ± Cn), U±1 = e1 ∓ e3 and

U±2 = e2∓e4, the formulations of symmetric and anti-symmetric mode amplitudes

(6.26) and (6.27) are achieved.

Φ+
m = −F`δm` + {U+

1 + (τ 2
m + 2)U+

2 }∆1m +
2α

Em

∞∑
n=0

Rmn cos(snL)χ+
n (6.26)

and

Φ−m = −F`δm` + {U−1 + (τ 2
m + 2)U−2 }∆1m −

2iα

Em

∞∑
n=0

Rmn sin(snL)χ−n , (6.27)

respectively, where

Rmn =

∫ a

0

cosh(βmy) cosh(γny)dy. (6.28)

Here Φ±m = (Am±Dm) and χ±n = (Bn±Cn) denote the amplitudes of symmetric/anti-

symmetric modes propagating in side regions and central regions, respectively, and

that yield the amplitudes of modes propagating towards the positive and negative

directions of the waveguide through expressions:

• Am =
1

2
(Φ+

m + Φ−m) and Dm =
1

2
(Φ+

m − Φ−m).

• Bm =
1

2
(χ+

m + χ−m) and Cm =
1

2
(χ+

m − χ−m).

Whereas, the quantities U±1 and U±2 involving in (6.26) and (6.27) are constants

having values respectively: U±1 = e1 ∓ e3 and U±2 = e2 ∓ e4, in which e1 =

−i ψ1xyyy(−L, a), e2 = −i ψ1xy(−L, a), e3 = −i ψ3xyyy(L, a) and e4 = −i ψ3xy(L, a)
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are governed during the normalization of (6.20) and (6.21) with generalized OR

(6.7).

Now before using the continuity of normal velocities it is worthwhile to encounter

the effect of vertical elastic plates, for this purpose we introduce two different

approaches; first the tailored-Galerkin and second the Model approach.

6.3.1 Tailored-Galerkin Solution

The fundamentals of this approach are linked with the assortment of trial functions

which determine the response along the vertical boundaries and their edges. The

dimensionless elastic plate displacements wj(y) for j = 1, 2 satisfy

d4wj
dy4

− µ4w1 = αψ2, x = ±L, a ≤ y ≤ b, (6.29)

From (6.29), the plate displacements are obtained as

w1(y) = a1 cos(µy) + a2 sin(µy) + a3 cosh(µy) + a4 sinh(µy) +

α
∞∑
n=0

(
Bne

−isnL + Cne
isnL
)

cosh(γny)

γ4
n − µ4

, (6.30)

w2(y) = a5 cos(µy) + a6 sin(µy) + a7 cosh(µy) + a8 sinh(µy)−

α
∞∑
n=0

(
Bne

isnL + Cne
−isnL

)
cosh(γny)

γ4
n − µ4

. (6.31)

Here the quantities ai, i = 1 . . . 8 are unknown constants and that determine the

physical behavior of vertical elastic plates at edges.

On adding and subtracting (6.30) and (6.31), the symmetric and anti-symmetric

modes are found as

W∓(y) = a∓15 cos(µy) + a∓26 sin(µy) + a∓37 cosh(µy) + a∓48 sinh(µy)−

2iα
∞∑
n=0

χ∓nΠ∓nL) cosh(γny)

γ4
n − µ4

, (6.32)
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where, Π+
n = sin(snL), Π−n = i cos(snL), a±15 = a1±a5, a±26 = a2±a6, a±37 = a3±a7,

a±48 = a4 ± a8 and W±(y) = w1(y)± w2(y) respectively.

Now we impose extra edge conditions which not only define the type of connection

of vertical plates having at finite edges y = a and y = b but also ensure the

uniqueness of the solution. In order to explain the versatility of approach two

different types of such conditions are discussed in the subsequent subsections.

Clamped Edges of Vertical Elastic Plates

The edges are clamped if displacements as well as gradient are zero. The clamped

edge conditions are expressed as:

W±(a) = 0 = W±(b), (6.33)

W±
y (a) = 0 = W±

y (b). (6.34)

On invoking (6.33)–(6.34) into (6.32), the matrix forms of unknown constants are

obtained as:

a∓15 cos(µp) + a∓26 sin(µp) + a∓37 cosh(µp) + a∓48 sinh(µp) =

−2iα
∞∑
n=0

χ∓Π∓n cosh(γqp)

γ4
n − µ4

at p = a, b (6.35)

−a∓15 sin(µp) + a∓26 cos(µp) + a∓37 sinh(µp) + a∓48 cosh(µp) =

−2iα

µ

∞∑
n=0

χ∓Π∓mγn sinh(γqp)

γ4
n − µ4

at p = a, b. (6.36)

The unknown constants {a±15, a
±
26, a

±
37, a

±
48} can be obtained from (6.35)-(6.36) very

easily.

Pin-jointed Connections of Vertical Plates

The connection at edges are pin-jointed if we assume a zero displacement as well

as a zero bending moment over there, mathematically pin-jointed edge conditions
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takes the form:

W±(a) = 0 = W±(b), (6.37)

W±
yy(a) = 0 = W±

yy(b). (6.38)

By substituting (6.37)–(6.38) into (6.32), the system in the form of unknown con-

stants are found as

a∓15 cos(µp) + a∓26 sin(µp) + a∓37 cosh(µp) + a∓48 sinh(µp) =

−2iα
∞∑
n=0

χ∓Π∓n cosh(γqp)

γ4
n − µ4

at p = a, b

(6.39)

−a∓15 cos(µp)− a∓26 sin(µp) + a∓37 cosh(µp) + a∓48 sinh(µp) =

−2iα

µ2

∞∑
n=0

χ∓Π∓n γ
2
n sinh(γqp)

γ4
n − µ4

at p = a, b (6.40)

From (6.39)-(6.40) on solving simultaneously, the values of unknowns {a±15, a
±
26, a

±
37, a

±
48}

are found. Once these quantities become known, the constants aj, j = 1 . . . 8 are

obtained in straightforward way from the expressions:

a1 =
1

2
(a+

15 + a−15), a3 =
1

2
(a+

37 + a−37), (6.41)

a2 =
1

2
(a+

26 + a−26), a4 =
1

2
(a+

28 + a−28). (6.42)

a5 =
1

2
(a+

15 − a−15), a6 =
1

2
(a+

37 − a−37), (6.43)

a7 =
1

2
(a+

26 − a−26), a8 =
1

2
(a+

28 − a−28). (6.44)

Likewise, the velocity flux conditions at interfaces take the form:

∫ b

0

ψ2x(−L, y)Y2(γm, y)dy =

∫ a

0

ψ1x(−L, y)Y2(γm, y)dy

+

∫ b

a

w1(y)Y2(γm, y)dy (6.45)
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and

∫ b

0

ψ2x(L, y)Y2(γm, y)dy =

∫ a

0

ψ3(L, y)Y2(γm, y)dy

+

∫ b

a

w2(L, y)Y2(γm, y)dy. (6.46)

Accordingly, (6.45) and (6.46) link the acoustic velocity of central region to the

acoustic velocities of inlet and outlet regions at x = ±L, and that may lead to the

values of amplitudes of symmetric and anti-symmetric modes propagating in the

central region.

On invoking (6.16)-(6.18) into (6.45) and (6.46), and normalizing with the help of

OR (6.8), after some rearrangement it is obtained that:

Bme
−ismL − CmeisnL = Ωm{e5 + (γ2

m + 2)e6}+
α

smHm

{F`η`Rm` −
∞∑
n=0

RmnηnAn}

− iα

smHm

{a1A1m + a2A2m + a3A3m + a4A4m}+

iα2

smHm

∞∑
n=0

Tmn(Bne
−isnL + Cne

isnL)

γ4
n − µ4

,(6.47)

Bme
ismL − Cme−isnL = Ωm{e7 + (γ2

m + 2)e8}+
α

smHm

∞∑
n=0

RmnηnDn

− iα

smHm

{a5A1m + a6A2m + a7A3m + a8A4m} −

iα2

smHm

∞∑
n=0

Tmn(Bne
isnL + Cne

−isnL)

γ4
n − µ4

,(6.48)

where Ωm = ∆2m/sm and ∆2m = γm sinh(γmb)/Hm. Now the addition and

subtraction of (6.47) and (6.48) reveal

Bm + Cm =
iΩm

2 sin(smL)

{
(e5 − e7) + (γ2

m + 2)(e6 − e8)
}
−

iα

2smHm sin(smL)
{F`η`R`m −

∞∑
n=0

Rnmη`(An +Dn)} −

iα

2smHm sin(snL)
{(a1 − a5)A1m + (a2 − a6)A2m + (a3 − a7)A3m}+

iα

2smHm sin(snL)
{(a4 − a8)A4m − 2α

∞∑
n=0

Tmn cos(smL)(Bn + Cn)

γ4
n − µ4

}, (6.49)
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and

Bm − Cm =
Ωm

2 cos(smL)

{
(e5 + e7) + (γ2

m + 2)(e6 + e8)
}

+

α

2smHm cos(smL)
{F`η`R`m −

∞∑
n=0

Rnmη`(An +Dn)} −

iα

2smHm cos(snL)
{(a1 + a5)A1m + (a2 + a6)A2m + (a3 + a7)A3m} −

iα

2smHm cos(snL)
{(a4 + a8)A4m + 2α

∞∑
n=0

Tmn sin(smL)(Bn − Cn)

γ4
n − µ4

}, (6.50)

respectively. Then by considering χ±n = (Bn±Cn), V ±1 = e5±e7 and V ±2 = e6±e8,

the amplitudes of symmetric and anti-symmetric modes propagating in the central

region are found as

χ+
m =

i

2 sin(smL)
{(V +

1 + (γ2
m + 2)V +

2 ) Ωm −
iα

2smHm sin(smL)
(Θ+

m(R) +

α

2Hmsm sin (smL)
{a−15A1m + a−26A2m + a−37A3m + a−48A4m}

− α2

Hmsm sin (smL)

∞∑
n=0

χ+
n cos(snL)Tnm
γ4
n − µ4

(6.51)

and

χ−m =
1

2 cos(smL)
{(V +

1 + (γ2
m + 2)V +

2 ) Ωm +
α

2smHm cos(smL)
(Θ−m(R)−

iα

2Hmsm cos (smL)
{a+

15A1m + a+
26A2m + a+

37A3m + a+
48A4m}

− α2

Hmsm cos (smL)

∞∑
n=0

χ−n sin(snL)Tnm
γ4
n − µ4

(6.52)

where

Θ±m(R) = F`η`Rm` −
∞∑
n=0

RmnηnΦ±n , (6.53)

and

A1m =

∫ b

a

cos(µy) cosh(γmy)dy,
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A2m =

∫ b

a

sin(µy) cosh(γmy)dy,

A3m =

∫ b

a

cosh(µy) cosh(γmy)dy,

A4m =

∫ b

a

sinh(µy) cosh(γmy)dy,

and

Tmn =

∫ b

d

cosh(γmy) cosh(γny)dy. (6.54)

Here quantities V ±1 = e5± e7 and V ±2 = e6± e8 which include additional constants

e5 = ψ2yyy(−L, b), e6 = ψ2y(−L, b), e7 = ψ2yyy(L, b) and e8 = ψ2y(L, b), have

appeared during the normalizing of (6.45) and (6.46) with generalized OR (6.8).

We still need to cater for additional unknowns U±j and V ±j for j = 1, 2 they can be

found by taking into account the physical behavior of horizontal elastic plates at

the joints. For this we need to impose additional physical conditions on horizontal

connection of elastic plates that may be clamped, pin jointed or pivoted. The are

evaluated in the following subsections.

6.3.2 Clamped Edges of Horizontal Elastic Plates

The edges are clamped if displacements as well as gradient are zero, that are:

ψ1y(−L, a) = 0 = ψ3y(L, a), (6.55)

ψ1xy(−L, a) = 0 = ψ3xy(L, a), (6.56)

ψ2y(±L, b) = 0, (6.57)

ψ2xy(±L, b) = 0. (6.58)

The above equations are helpful, to evaluate the values of physical constants

{Uj, Vj} and that yield U±2 = V ±2 = 0, whereas, for U±1 and V ±1 , the edge conditions
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(6.55) and (6.58) lead to

To achieve U±1 , the multiplication of (6.26)-(6.27) with γm sinh(γma) results:

∆1mEmΦ+
m = −∆1mF`δm`E` + ∆2

1mEm{U+
1 + (γ2

m + 2)U+
2 }

+2α∆1m

∞∑
n=0

Rmn cos(snL)χ+
n , (6.59)

∆1mEmΦ−m = ∆1mEmF`δm`E` −∆2
1mEm{U−1 + (γ2

m + 2)U−2 }

−2iα∆1m

∞∑
n=0

Rmn sin(snL)χ−n . (6.60)

However, by using (6.16)-(6.18) into edge conditions (6.55) one finds

F`∆1`E` +
∞∑
n=0

∆1nEnAn = 0, (6.61)

∞∑
n=0

∆1nEnDn = 0. (6.62)

Then by performing the operation of addition and subtraction on (6.61) and (6.62)

simultaneously results:

∞∑
n=0

∆1nEnΦ±n = −F`∆1`E`. (6.63)

Now the summation from zero to infinity over m of (6.59) and (6.60), then putting

into (6.63), we accomplish (6.64) and (6.65).

Similarly, to obtained V ±1 multiply (6.51)-(6.52) by ∆2mHmsm sin(smL) and then

taking summation from zero to infinity over m and using edge conditions (6.58),

finally conclude to (6.66) and (6.68).

U−1 = − 2

S1

{F`η`∆1`E` + iα

∞∑
m=0

∞∑
n=0

∆1mηmRmn sin(snL)Φ−n }, (6.64)

U+
1 = − 2

S1

{F`η`∆1`E` − α
∞∑
m=0

∞∑
n=0

∆1mηnRmn cos(snL)Φ+
n }, (6.65)
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V +
1 = − α

2S2

∞∑
m=0

Ωm tan(smL)Θ+
m(R)−

iα

2S2

∞∑
m=0

Ωm tan(smL){a−15A1m + a−26A2m + a−37A3m + a−48A4m}

−iα
2

S2

∞∑
m=0

Ωm tan(smL)
∞∑
n=0

sin(snL)Tmnχ
+
n

γ4
n − µ4

(6.66)

V −1 = − α

2S3

∞∑
m=0

Ωm cot(smL)Θ−m(R)− (6.67)

iα

2S3

∞∑
m=0

Ωm cot(smL){a+
15A1m + a+

26A2m + a+
37A3m + a+

48A4m}

+
iα2

S3

∞∑
m=0

Ωm cot(smL)
∞∑
n=0

cos(snL)Tmnχ
−
n

γ4
n − µ4

, (6.68)

where

S1 =
∞∑
m=0

∆2
1mEmηm, S2 =

1

2

∞∑
m=0

Ω2
msmHm tan(smL)

γ4
m − µ4

and

S3 =
1

2

∞∑
m=0

Ω2
msmHm cot(smL)

γ4
m − µ4

.

6.3.3 Pin-jointed Edges of Horizontal Elastic Plates

For horizontal elastic plate pin-jointed edge conditions take the form

ψ1y(−L, a) = 0 = ψ3y(L, a), (6.69)

ψ1xxy(−L, a) = 0 = ψ3yxx(L, a), (6.70)

ψ2y(±L, b) = 0, (6.71)

ψ2xxy(−L, b) = 0 = ψ2yxx(L, b). (6.72)
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From (6.71) it is found that U±2 = 0, whereas, to determine U±1 , the equations

(6.69) and (6.70) apply, By multiplying (6.51) with
∑∞

m=0 ∆2mHms
2
m cos(smL)

and then using (6.72), it is found that

S11V
+

1 + S12V
+

2 = −α
∞∑
m=0

Ωms
2
m tan(smL)Θ−m(R)−

iα
∞∑
m=0

Ωms
2
m tan(smL){a+

15A1m + a+
26A2m + a+

37A3m + a+
48A4m}

−2iα2

∞∑
m=0

Ωms
2
m tan(smL)

∞∑
n=0

χ−n sin(snL)Tmn
γ4
n − µ4

, (6.73)

substituting Θ−m(R) from (6.53), it is straightforward to obtain

S11V
+

1 + S12V
+

2 = −α
∞∑
m=0

Ωms
2
m tan(smL){F`η`R`m−

∑∞
n=0

Φ−mηnRnm} −

iα
∞∑
m=0

Ωms
2
m tan(smL){a+

15A1m + a+
26A2m + a+

37A3m + a+
48A4m}

−2iα2

∞∑
m=0

Ωms
2
m tan(smL)

∞∑
n=0

χ−n sin(snL)Tmn
γ4
n − µ4

, .(6.74)

Now the smooth convergence of summations in (6.73), is achieved with the help

of Green’s identity (6.11) and the integrals of Rmn and Tmn can be splitted as:

Rnm =

∫ b

0

cosh(γmy) cosh(τny)dy −
∫ b

a

cosh(γmy) cosh(τny)dy (6.75)

and

Tmn =

∫ b

0

cosh(γmy) cosh(τny)dy −
∫ a

0

cosh(γmy) cosh(τny)dy. (6.76)

By using these values, (6.73) can be expressed as:
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S11V
+

1 + S12V
+

2 = −α
∞∑
m=0

Ωms
2
m tan(smL){

∫ b

0

cosh(γmy) cosh(τ`y)dy − P`m}

+α
∞∑
n=0

∞∑
m=0

Ωms
2
m tan(smL)Φ+

n {
∫ b

0

cosh(γmy) cosh(τny)dy − Pmn}

iα
∞∑
m=0

Ωms
2
m tan(smL){a+

15A1m + a+
26A2m + a+

37A3m + a+
48A4m}

−2iα2

∞∑
m=0

Ωms
2
m tan(smL)

∞∑
n=0

χ−n sin(snL)

γ4
n − µ4

{
∫ b

0

cosh(γny) cosh(γny)dy −Qmn}(6.77)

where

Pmn =

∫ b

a

cosh(γmy) cosh(τny)dy (6.78)

and

Qmn =

∫ b

a

cosh(γmy) cosh(γny)dy. (6.79)

However, form the Green’s identity (6.11) when y ∈ [0, b], it is observed that:

∞∑
m=0

Ωms
2
m tan(smL)

∫ b

0

cosh(γmy) cosh(τ`y)dy = 0 (6.80)

∞∑
n=0

Φ−n

∞∑
m=0

Ωms
2
m

∫ b

0

cosh(γmy) cosh(τny)dy = 0 (6.81)

∞∑
m=0

Ωms
2
m tan(smL)

∞∑
n=0

χ−n sin(snL)

γ4
n − µ4

∫ b

0

cosh(γny) cosh(γny)dy = 0. (6.82)

Hence, on making use of (6.80)-(6.82), (6.77) is simplified to (6.85).

S4U
+
1 = −2α

∞∑
m=0

∞∑
n=0

∆1mη
2
mRmnΦ+

n cos(snL), (6.83)

S4U
−
1 = 2iα

∞∑
m=0

∞∑
n=0

∆1mη
2
mRmnΦ−n sin(νnL), (6.84)

where

S4 =
∞∑
m=0

∆2
1mη

2
mEm.

Now by solving (6.83) and (6.84) simultaneously give {U+
1 , U

1
1} However, to get

{V ±1 , V ±2 } we use (6.72) with (6.11)-(6.14), which finally lead to:
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S5V
−

1 + S6V
−

2 = −α
∞∑
m=0

Ωm cot(smL)Θ+
m(R)−

iα

∞∑
m=0

Ωm cot(smL){a−15A1m + a−26A2m + a−37A3m + a−48A4m}

+2iα2

∞∑
m=0

Ωm cot(smL)
∞∑
n=0

χ+
n cos(snL)Tmn
γ4
n − µ4

, (6.85)

S7V
+

1 + S8V
+

2 = −α
∞∑
m=0

Ωm tan(smL)Θ−m(R)−

iα

∞∑
m=0

Ωm tan(smL){a+
15A1m + a+

26A2m + a+
37A3m + a+

48A4m}

−2iα2

∞∑
m=0

Ωm tan(smL)
∞∑
n=0

χ−n sin(snL)Tmn
γ4
n − µ4

, (6.86)

S9V
−

1 + S10V
−

2 = −α
∞∑
m=0

Ωms
2
m cot(smL)Θ+

m(R)−

iα
∞∑
m=0

Ωms
2
m cot(smL){a−15A1m + a−26A2m + a−37A3m + a−48A4m}

+2iα2

∞∑
m=0

Ωms
2
m cot(smL)

∞∑
n=0

χ+
n cos(snL)Tmn
γ4
n − µ4

, (6.87)

S11V
+

1 + S12V
+

2 = −α
∞∑
m=0

Ωms
2
m tan(smL)Θ−m(R)−

iα
∞∑
m=0

Ωms
2
m tan(smL){a+

15A1m + a+
26A2m + a+

37A3m + a+
48A4m}

−2iα2

∞∑
m=0

Ωms
2
m tan(smL)

∞∑
n=0

χ−n sin(snL)Tmn
γ4
n − µ4

, (6.88)

where

S5 =
∞∑
m=0

Ω2
mHmsm cot(smL) and S6 =

∞∑
m=0

Ω2
mHmsm cot(smL)(γ2

m + 2)
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S7 =
∞∑
m=0

Ω2
mHmsm tan(smL) and S8 =

∞∑
m=0

Ω2
mHmsm tan(smL)(γ2

m + 2)

S9 =
∞∑
m=0

∆2
2mHmsm cot(smL) and S10 =

∞∑
m=0

∆2
2mHmsm cot(smL)(γ2

m + 2)

S11 =
∞∑
m=0

∆2
2mHmsm tan(smL) and S12 =

∞∑
m=0

∆2
2mHmsm tan(smL)(γ2

m + 2)(6.89)

whereas, to get (6.86)-(6.88) similar procedure may be adopted.

6.4 Modal Approach

To check the validity of MMTG approach it is useful to compare the obtained

results with outcome of some other technique, for this purpose, an appropriate

solution method Modal approach is developed. This approach broaden the range

of edge conditions that can be addressed and avoid the need for additional root-

finding.

For this purpose the vertical plates displacement is expressed in terms of a set

of basis functions that are already known, and are non-zero and have non-zero

derivatives at y = a, b. Thus, it is convenient to express the displacement as a

modal expansion using the eigenfunctions for the duct height b. As previously

mentioned, key to the success of this approach are the properties of these eigen-

functions, namely, their linearly dependence and the Greens function representa-

tion [123]]. The fundamentals of this approach can be seen in Afzal and Lawrie

[81]. The vertical elastic plates displacements at a 6 y 6 b and x = ±L can be

found as The vertical elastic plates displacements at a 6 y 6 b and x = ±L can

be expressed in the form of model coefficients as

w1(y) =
∞∑
n=0

G1n cosh(γny), (6.90)

w2(y) =
∞∑
n=0

G2n cosh(γny). (6.91)
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where the G1n and G2n are unknown Modal coefficients. Substituting (6.90) into

(6.29), multiplying by cosh(γqy) and integrating from a < y < b it is found that :

∞∑
n=0

G1n{γ4
n − µ4} cosh(γny) = α

∞∑
n=0

(Bne
−isnL + Cne

isnL) cosh(γny). (6.92)

Multiplying (6.92) by cosh(γqy) and integrating over a < y < b reveal as:

∞∑
n=0

G1n{γ4
n − µ4}Tnq = α

∞∑
n=0

(Bne
−isnL + Cne

isnL)Tnq, (6.93)

where

Tnq =

∫ b

a

cosh(γqy) cosh(γny)dy, (6.94)

twice integrating by parts (6.94) lead to

γ2
nTnq = γ2

qTnq + γn cosh(γqb) sinh(γnb)− γn cosh(γqa) sinh(γna)

+γq cosh(γna) sinh(γqa)− γq cosh(γnb) sinh(γqb) (6.95)

Multiplying (6.95) by γ2
n and using again (6.94) in the obtained equation, after a

little rearrangement it is found that

γ4
nTnq = γ4

qTnq + γ2
qγn cosh(γqb) sinh(γnb)− γ2

qγn cosh(γqa) sinh(γna)

+γ3
q cosh(γna) sinh(γqa)− γ3

q cosh(γnb) sinh(γqb)

+γ3
n cosh(γqb) sinh(γnb)− γ3

n cosh(γqa) sinh(γna)

+γqγ
2
n cosh(γna) sinh(γqa)− γqγ2

n cosh(γnb) sinh(γqb). (6.96)

Invoking (6.96) into (6.93) and after some rearrangements it is found that
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∞∑
n=0

G1nTnq = −L1 cosh(γqa)

γ4
q − µ4

− L2 cosh(γqb)

γ4
q − µ4

− L3γq sinh(γqa)

γ4
q − µ4

− L4γq sinh(γqb)

γ4
q − µ4

−
E5γ

2
q cosh(γqa)

γ4
q − µ4

−
L6γ

2
q cosh(γqb)

γ4
q − µ4

−
L7γ

3
q sinh(γqa)

γ4
q − µ4

−

L8γ
3
q sinh(γqb)

γ4
q − µ4

+
α

γ4
q − µ4

∞∑
n=0

(Bne
−isnL + Cne

isnL)Tnq,(6.97)

where L1 = −w1yyy(a), L2 = w1yyy(b), L3 = w1yy(a), L4 = −w1yy(b), L5 =

−w1y(a), L6 = w1y(b), L7 = w1(a), andL8 = −w1(b) and w1(y) is defined by

(6.90)). On multiplying (6.97) by α cosh(γqy)/Dq and summing over q that leads

to

α
∞∑
n=0

∞∑
q=0

G1n cosh(γqy)Tnq
Dq

= −L1ψ
1(y)− L2ψ

2(y)− L3ψ
3(y)− L4ψ

4(y)

−L5ψ
5(y)− L6ψ

6(y)− L7ψ
7(y)− L8ψ

8(y)

+α2

∞∑
n=0

∞∑
q=0

(Bne
−isnL + Cne

isnL) cosh(γqy)Tnq
Dq(γ4

q − µ4)
, (6.98)

where the function ψj(y), j = 1 . . . 8 are defined by a function as,

z(p) = α
∞∑
q=0

cosh(γqy) cosh(γqp)

Dq(γ4
q − µ4)

,

here, {ψ1(y) = z(a), ψ2(y) = z(b), ψ3(y) = z′(a), ψ4(y) = z′(b), ψ5(y) =

z′′(a), ψ6(y) = z′′(b), ψ7(y) = z′′′(a), ψ8(y) = z′′′(b)} and the prime represents

derivative with respect to p.

The reader is reminded that the aim is to construct w(y) from (6.98), and also

that no explicit OR exists for the functions cosh(γny) on the range a 6 y 6 b.

The quantity Tnq is, however, defined in (6.94) as an integral and this enables the

Greens function (6.14) to be used in lieu.

Thus, on interchanging the orders of summation and integration on the left hand

side of (6.94) and using (6.14), it is obtained as
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w1(y) = −L1ψ
1(y)− L2ψ

2(y)− L3ψ
3(y)− L4ψ

4(y)− L5ψ
5(y)− L6ψ

6(y)

−L7ψ
7(y)− L8ψ

8(y) + α2

∞∑
n=0

∞∑
q=0

(Bne
−isnL + Cne

isnL) cosh(γqy)Tnq
Dq(γ4

q − µ4)
. (6.99)

Similarly adopting the same procedure one can found the elastic plate displacement

at x = L, a 6 y 6 b as:

w2(y) = −M1ψ
1(y)−M2ψ

2(y)−M3ψ
3(y)−M4ψ

4(y)−M5ψ
5(y)−M6ψ

6(y)

−M7ψ
7(y)−M8ψ

8(y)− α2

∞∑
n=0

∞∑
q=0

(Bne
isnL + Cne

−isnL) cosh(γqy)Tnq
Dq(γ4

q − µ4)
.(6.100)

Here, Li, Mi for i = 1, . . . 8 are constants respectively and can obtained from edge

conditions. Adding and subtracting (6.99) and (6.100) respectively, it is found as

W+
1 (y) = −N+

1 ψ
1(y)−N+

2 ψ
2(y)−N+

3 ψ
3(y)−N+

4 ψ
4(y)−N+

5 ψ
5(y)−N+

6 ψ
6(y)

−N+
7 ψ

7(y)−N+
8 ψ

8(y)− 2iα2

∞∑
n=0

∞∑
q=0

χ− sin(snL) cosh(γqy)Tnq
Dq(γ4

q − µ4)
.(6.101)

W−
1 (y) = −N−1 ψ1(y)−N−2 ψ2(y)−N−3 ψ3(y)−N−4 ψ4(y)−N−5 ψ5(y)−N−6 ψ6(y)

−N−7 ψ7(y)−N−8 ψ8(y) + 2α2

∞∑
n=0

∞∑
q=0

χ+ cos(snL) cosh(γqy)Tnq
Dq(γ4

q − µ4)
.(6.102)

Here, N±i = Li ±Mi for i = 1, . . . , 8. Furthermore, the effects of edge conditions

are assimilated in subsequent subsections.

6.4.1 Clamped Edges of Vertical Elastic Plates.

For clamped edges at x = ±L, a 6 y 6 b the equations (6.33)-(6.34) in association

with the (6.101)-(6.102) give

N±5 = 0 = N±6 , N
±
7 = 0 = N±8 (6.103)
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and

N±1 ψ
1(p) +N±2 ψ

2(p) +N±3 ψ
3(p) +N±4 ψ

4(p) =

−2iα2

∞∑
n=0

∞∑
n=0

χ∓Π∓n cosh(γqp)Tnq
Dq(γ4

q − µ4)
at p = a, b (6.104)

N±1 ψ
1
y(p) +N±2 ψ

2
y(p) +N±3 ψ

3
y(p) +N±4 ψ

4
y(p) =

−2iα2

∞∑
n=0

∞∑
n=0

χ∓Π∓mγq sinh(γqp)Tnq
Dq(γ4

q − µ4)
at p = a, b (6.105)

where, Πn is defined earlier and at p = a, b thus for this set of edge conditions

{N±i , i = 1, . . . , 4} can be obtained from (6.104)− (6.105) respectively.

6.4.2 Pin-jointed Edges of Vertical Elastic Plates

For this set of edge conditions, (6.37) and (6.38) together with ((6.101))-((6.102))

lead to

N±3 = N±4 = 0 = N±7 = N±8 , (6.106)

and the pin-jointed edge conditions of vertical elastic plate at x = −L and a 6

y 6 b leads to

N±1 ψ
1(p) +N±2 ψ

2(p) +N±5 ψ
5(p) +N±6 ψ

6(p) =

−2iα2

∞∑
n=0

∞∑
n=0

χ∓Π±n cosh(γqy)Tnq
Dq(γ4

q − µ4)
at p = a, b (6.107)

N±1 ψ
1
yy(p) +N±2 ψ

2
yy(p) +N±5 ψ

5
yy(p) +N±6 ψ

6
yy(y) =

−2iα2

∞∑
n=0

∞∑
n=0

χ∓Π±n γq sinh(γqy)Tnq
Dq(γ4

q − µ4)
at p = a, b. (6.108)

For this set of edge conditions {N±i , i = 1, . . . , 4} can be obtained from (6.107)−

(6.108) and p = a, b respectively.
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Once these quantities become known, the constants {Lj, Mj}, j = 1 . . . 8 are

obtained in straightforward way from the expressions:

L1 =
1

2
(N+

1 +N−1 ), L3 =
1

2
(N+

3 +N−3 ), (6.109)

L2 =
1

2
(N+

2 +N−2 ), L4 =
1

2
(N+

4 +N−4 ). (6.110)

M1 =
1

2
(N+

1 −N−1 ), M3 =
1

2
(N+

3 −N−3 ), (6.111)

M2 =
1

2
(N+

2 −N−2 ), M4 =
1

2
(N+

4 −N−4 ). (6.112)

Likewise to evaluate the velocity flux conditions at interfaces x = ±L, a < y < b,

substituting (6.16)-(6.18) along with (6.99)-(6.100) into (6.45)-(6.46) and normal-

izing with the aid of OR (6.8), after some arrangement it is found that

Bme
−ismL − CmeisnL = Ωm{e5 + (γ2

m + 2)e6}+
α

smHm

{F`η`Rm` −
∞∑
n=0

RmnηnAn}

− iα

smHm

{L1Ψ1
m + L2Ψ2

m + L3Ψ3
m + L4Ψ4

m} −

iα3

smHm

∞∑
n=0

∞∑
q=0

(Bne
−isnL + Cne

isnL)TmqTnq
Dq(γ4

q − µ4)
, (6.113)

Bme
ismL − Cme−isnL = Ωm{e7 + (γ2

m + 2)e8}+
α

smHm

∞∑
n=0

RmnηnDn

+
iα

smHm

{M1Ψ1
m +M2Ψ2

m +M3Ψ3
m +M4Ψ4

m}

− iα3

smHm

∞∑
n=0

∞∑
q=0

(Bne
isnL + Cne

−isnL)TmqTnq
Dq(γ4

q − µ4)
, (6.114)

addition and subtraction of (6.113),(6.114) yields system of equations in the form

of amplitudes of symmetric and anti-symmetric modes propagating in the central
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region as

Bm + Cm =
iΩm

2 sin(smL)

{
(e5 + e7) + (γ2

m + 2)(e6 + e8)
}

+

iα

2smHm sin(smL)
{F`η`R`m −

∞∑
n=0

Rnmη`(An +Dn)} −

α

2smHm sin(snL)
{(L1 −M1)Ψ1

m + (L2 −M2)Ψ2
m + (L3 −M3)Ψ3

m} −

α

2smHm sin(snL)
{(L4 −M4)Ψ4

m − 2α2

∞∑
n=0

∞∑
q=0

TmqTnq cos(snL)(Bn + Cn)

Dq(γ4
q − µ4)

}, (6.115)

and

Bm − Cm =
Ωm

2 cos(smL)

{
(e5 − e7) + (γ2

m + 2)(e6 − e8)
}

+

α

2smHm cos(smL)
{F`η`R`m −

∞∑
n=0

Rnmη`(An −Dn)}+

iα

2smHm cos(snL)
{(L1 +M1)Ψ1

m + (L2 +M2)Ψ2
m + (L3 +M3)Ψ3

m}+

iα

2smHm cos(snL)
{(L4 +M4)Ψ4

m − 2α2

∞∑
n=0

∞∑
q=0

TmqTnq sin(snL)(Bn − Cn)

Dq(γ4
q − µ4)

}, (6.116)

χ+
m =

i

2 sin(smL)
{(V −1 + (γ2

m + 2)V −2 )} Ωm −
iα

2smHm sin(smL)
(Θ+

m(R)−
α

2Hmsm sin (smL)
{N−1 Ψ1

m +N−2 Ψ2
m +N−3 Ψ3

m +N−4 Ψ4
m}

+
α3

Hmsm sin (smL)

∞∑
n=0

∞∑
q=0

χ+
n cos(snL)TmqTnq
Dq(γ4

n − µ4)
(6.117)

and

χ−m =
1

2 cos(smL)
{(V +

1 + (γ2
m + 2)V +

2 )} Ωm +
α

2smHm cos(smL)
(Θ−m(R) +

iα

2Hmsm cos (smL)
{N+

1 Ψ1
m +N+

2 Ψ2
m +N+

3 Ψ3
m +N +−4Ψ4

m}

− α3

Hmsm cos (smL)

∞∑
n=0

∞∑
q=0

χ−n sin(snL)TmqTnq
Dq(γ4

n − µ4)
(6.118)

where
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Ψj
m =

∫ b

a

ψj(y)Y2(γm, y)dy m = 1, . . . , 4. (6.119)

6.4.3 Clamped Edges of Horizontal Elastic Plates

In case of clamped edges, the conditions (6.57)-(6.58) and (6.117)-(6.118) in asso-

ciation with the field potentials (6.17) yield

V ±2 = e2 ± e4 = 0, (6.120)

and V ±1 can be obtained by multiplying (6.117), (6.118) by γm sinh(γm) cos(smL),

γm sinh(γm) sin(smL) respectively, summing over m obtained

V +
1 S1 = −α

2

∞∑
m=0

Ωm tan smL)Θ−m(R)− (6.121)

iα

2

∞∑
m=0

Ωm tan(smL){N+
1 Ψ1

m +N+
2 Ψ2

m +N+
3 Ψ3

m +N+
4 Ψ4

m}

+α3

∞∑
m=0

Ωm tan(smL)
∞∑
n=0

∞∑
q=0

χ−n sin(snL)TmqTnq
Dq(γ4

q − µ4)
,

and

V −1 S2 = −α
2

∞∑
m=0

Ωm cot smL)Θ+
m(R)− (6.122)

iα

2

∞∑
m=0

Ωm cot(smL){N−1 Ψ1
m +N−2 Ψ2

m +N−3 Ψ3
m +N−4 Ψ4

m}

+α3

∞∑
m=0

Ωm cot(smL)
∞∑
n=0

∞∑
q=0

χ+
n sin(snL)TmqTnq
Dq(γ4

q − µ4)
,

respectively, where S1 and S2 are defined in the previous section.

6.4.4 Pin-jointed Edges of Horizontal Elastic Plates

The pin-jointed edge conditions for Modal approach are obtained by invoking

(6.17) into (6.71)-(6.72) Now by solving (6.83) and (6.84) simultaneously give
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{U+
1 , U

+
2 } and likewise by solving (6.69) and (6.70) yield {U−1 , U−2 }. However,

to get V ±1 we use (6.72) together with the characteristics of linearly dependent

eigenfunctions (6.11)-(6.14), which finally lead to:

S5V
−

1 + S6V
−

2 =
α

2

∞∑
m=0

Ωm cot(smL)Θ+
m(R)−

iα

2

∞∑
m=0

Ωm cot(smL){N−1 Ψ1
m +N−2 Ψ2

m +N−3 Ψ3
m +N−4 Ψ4

m}

+iα3

∞∑
m=0

Ωm cot(smL)
∞∑
n=0

∞∑
q=0

χ+
n cos(snL)TmqTnq
Dq(γ4

n − µ4)
, (6.123)

S7V
+

1 + S8V
+

2 = −α
2

∞∑
m=0

Ωm tan(smL)Θ−m(R)−

iα
∞∑
m=0

Ωm tan(smL){N+
1 Ψ1

m +N+
2 Ψ2

m +N+
3 Ψ3

m +N+
4 Ψ4

m}

−iα3

∞∑
m=0

Ωm tan(smL)
∞∑
n=0

∞∑
q=0

χ−n sin(snL)TmqTnq
Dq(γ4

n − µ4)
, (6.124)

S9V
−

1 + S10V
−

2 = −α
2

∞∑
m=0

Ωms
2
m cot(smL)Θ+

m(R)−

iα

∞∑
m=0

Ωms
2
m cot(smL){N−1 Ψ1

m +N−2 Ψ2
m +N−3 Ψ3

m +N−4 Ψ4
m}

+iα3

∞∑
m=0

Ωms
2
m cot(smL)

∞∑
n=0

∞∑
q=0

χ+
n cos(snL)TmqTnq
Dq(γ4

n − µ4)
, (6.125)

S11V
+

1 + S12V
+

2 = −α
2

∞∑
m=0

Ωms
2
m tan(smL)Θ−m(R)−

iα

∞∑
m=0

Ωms
2
m tan(smL){N+

1 Ψ1
m +N+

2 Ψ2
m +N+

3 Ψ3
m +N+

4 Ψ4
m}

−2α3

∞∑
m=0

Ωms
2
m tan(smL)

∞∑
n=0

∞∑
q=0

χ−n sin(snL)TmqTnq
Dq(γ4

n − µ4)
, (6.126)
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6.5 Numerical Results and Discussion

In this section the validity is analyzed for mode-matching tailored-Galerkin (MMTG)

as well as Modal approach (MA) methods numerically. The linear algebraic sys-

tems retained against these methods are truncated up to N terms, the truncated

solutions are used to investigate the effects of edge conditions on the scattering en-

ergies, and transmission loss versus frequency. According to the definition stated

in [112], the reflected energy flux or power in inlet and transmitted energy flux or

power in outlet can be formulated as

Er =
1

α

K−1∑
m=0

|Am|2ηmEm (6.127)

and

Et =
1

α

K−1∑
m=0

|Dm|2ηmEm, (6.128)

where the incident energy flux or power is scaled at unity and K denotes the num-

ber of cut-on modes in extended inlet/outlet region. The conservation of energy

flux of confined system can be expressed through the conserve power identity, that

is

Er + Et = 1. (6.129)

Note sum of the reflected energy flux and transmitted energy flux that is equal

to unit number (6.129) represents the incident energy flux or power fed into the

system .

The numerical results are obtained by taking the values of parameters discussed

in [114] as: density ρp = 2700 kgm−3, the thickness of the elastic plates of alu-

minum as h̄ = 0.0006 m, the values of Young’s modulus and Poisson’s ratio are

E = 7.2× 1010 Nm−2 and υ = 0.34,, sound speed c = 344 ms−1 and density of air

ρa = 1.2 kgm−3. The dimensional parameters are fixed as ā = 0.06m, b̄ = 0.085m,

and L̄ = 0.02m. The structural-borne fundamental mode (` = 0) and the fluid-

borne second mode (` = 1) are considered as; two different incident fields.

In Figs. 2-5 the curves are plotted by truncating and inverting the MMTG and
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MA systems with N = 25 terms and the results are displayed in the form of trans-

mitted and reflected powers against frequency. The curves with symbols (N�)

are obtained by using MMTG solution whilst the dashed curves represent the

results achieved via Modal approach solution. In each Figs. 2-3 two different

curves one with symbol (N) and the other with symbol (�) are obtained when

the connections of elastic plates at both ends are clamped and pin-jointed respec-

tively. While in each Figs. 4-5 the curves with symbol ( ) are obtained when the

elastic plates edges at y = a are clamped and at y = b are pin-jointed where as

the curves with symbol (�) are found when the elastic plates edges at y = a are

pin-jointed and at y = b are clamped. Also a close agreement between MMTG

and Model approach curves is seen in all in all frequency regimes see Figs. 2-5.

The results presented in Fig. 6.2 relate to horizontal and vertical elastic plates

having clamped and pin-jointed edges at x = ±L, a < y < b and include a com-

parison of scattering energies versus frequency, for fundamental or structure-borne

mode incident (` = 0) Fig. 6.2(a) and of the fluid-borne mode incident (` = 1)

Fig. 6.2(b). The reflected powers against frequency, the results with clamped and

pin-jointed edges of the vertical as will as vertical elastic plates at y = a and

y = b respectively are displayed in Fig. 6.2. Clearly, the systems converge more

rapidly for the structure born mode incident (see Fig. 6.2(a)) than the fluid-borne

mode incident (see Fig. 6.2(b)). The effects of clamped and pin-jointed edge con-

ditions on the vertical and horizontal elastic plates are significant and becomes

more apparent when the second cut-on mode of inlet/outlet starts propagating.

From Fig. 2 (a) it is observed that at f = 1Hz maximum of the radiated en-

ergy goes on reflection which decreases by increasing frequency and reaches to

its decremented value before the point whereby the second mode of the chamber

cavity starts propagating. Nevertheless, by changing the edge conditions of the

vertical flexible walls at x = ±L, a < y < b, a variation in reflection energies is

evident. This behavior is more significant about the points where the cuts-on of

the chamber cavity occurred (see Fig. 2(a) and 2(b)). Note that the fundamental

mode (n = 0) of extended inlet/outlet is always cut-on (whole frequency regime)

due to the presence of zero eigenvalue and that results a plane acoustic wave, a
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Figure 6.2: The reflected power against frequency obtained via MMTG tech-
nique (�N) and Modal approach (−−−) with N = 40 terms.

Table 6.1: Propagating Modes

Cut-on f(Hz) Inlet-Outlet Expansion Chamber

Region Region

191 1 1

1161 1 2

2301 1 3

2881 2 3

3446 2 4

3996 2 5

4015 3 5

mode which exist all the time in a duct having rigid boundary conditions. The

next energy propagating modes appear on higher frequencies; such as the second

cut-on mode of extended inlet/outlet arise at f = 2881Hz, however, lies out of

the frequency regime considered herein for analysis. Likewise in cavity containing

duct which bounded below with rigid wall and upper with elastic plates includes

fundamental duct mode throughout the frequency regime due to the presence of

one real root of dispersion relation (3.12), which always exists. However, the cut-

on frequencies of second and third modes of the duct including flexible cavity are

1161Hz and 2301Hz, respectively, and thus affect the scattering energies. The list

of cut-on frequencies is depicted in Table:1. Fig. 6.3 shows the transmitted powers
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against frequency, with all clamped (first curve) and all pin-jointed edges (second

curve) of horizontal as will as vertical elastic plates at y = a and y = b. Fig. 6.3(a)

and Fig. 6.3(b). It is clear from figures that the convergence in case of fluid-borne

mode incident (see Fig. 6.3(b)) is rapid than that of structure born mode incident

(see Fig. 6.3(a)). A close agreement between MMTG and Model approach for the

above mentioned edge conditions are seen in all frequency regimes. More over the

effects of these edges conditions is significant and becomes more apparent when

the first cut-on of inlet/outlet start propagating. In Fig. 6.4 the effects of clamped
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Figure 6.3: Transmitted power against frequency obtained via MMTG tech-
nique (�N) and Modal approach (−−−) with N = 40 terms.

connections of horizontal elastic plates and pin-jointed connections of vertical elas-

tic plates to the pin-jointed of horizontal and clamped of vertical elastic plates are

investigated in the form of reflected powers against frequency. Clearly, their effect

on reflected power is significant and becomes more prominent when the second

mode of inlet/outlet at f = 191 Hz starts propagating. The curves in Fig. 6.4(a)

and Fig. 6.4(b) are obtained respectively for the fundamental or structure-borne

mode incident (` = 0) and of the fluid-borne mode incident (` = 1). In case of

fundamental mode incident the maximum energy goes to reflection while for fluid

born mode incident a minimum amount of energy goes to reflection. Clearly, the

convergence is rapid for the case of structure born mode incident than fluid-borne

mode incident (see see Fig. 6.4(a) and Fig. 6.4(b)).



136

æ æ æ

æ
æ

æ
æ æ æ æ æ æ æ æ æàà à à

à

à
à à à à à à à à à

0 100 200 300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Frequency

P
o
w

er

à Pin-jointed at y=a and Clamped at y=b

æ Clamped at y=a and Pin-jointed at y= b

(a) fundamental mode incident (` = 0).

æ

æ

æ
æ æ æ æ æ æ æ æ æ æ æ æà

à
à à à à à à à à à à à à

à

200 300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

Frequency

P
o
w

er

à
Pin-jointed at y=a and Clamped at y=b

æ Clamped at y=a and Pin-jointed at y= b

(b) fluid-borne mode incident (` = 1).

Figure 6.4: Reflected power against frequency obtained via MMTG technique
(� ) and Model approach (−−−) with N=25 terms.

Fig. 6.5 shows the transmitted energies against frequency for structure born mode

incident (` = 0) see Fig. 6.5(a) and fluid born mode incident (` = 1) see Fig. 6.5(b).

The maximum energy goes on transmission for fluid born mode incident and a

negligible amount of scattering energies for structure born mode incident goes on

transmission. Clearly, the converge is more rapid for the structure born mode

incident than the fluid-borne mode incident (see Fig. 6.5(a) and Fig. 6.5(b)). The

results in Fig. 6.5 are the outcomes of MMTG and Model approaches when the

connections of horizontal and vertical elastic plates at the edges are clamped at

y = a, pin-jointed at y = b and pin-jointed at y = a and clamped at y = b respec-

tively. The effects of these edge conditions for both structure born mode and fluid

born mode on transmitted energies are significant and becomes more prominent

when higher order mode of chamber cavity starts propagating.

The performance of a HVAC silencer is measured usually with the help of trans-

mission loss (TL) and for unit incident power it is found in [123] as:

TL = −10 log10(Et). (6.130)

where, Et represents the transmitted power.

The results in in Fig. 6.6 shows TL verses frequency whereas at the edges y = a, b

there are clamped as well as pin-jointed connections. The graphs in Fig. 6.6(a)
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Figure 6.5: Transmitted power against frequency via MMTG technique (� )
and Model approach (−−−) with N=25 terms.
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Figure 6.6: Transmission loss (TL) against frequency obtained via MMTG
technique (�N) and Modal approach (−−−) with N = 40 terms.

reveal the case when the system being radiated through fundamental mode inci-

dent (` = 0) while in Fig. 6.6(b) the fluid-born mode (` = 1) . The dimensions of

waveguide are fixed with ā = 0.06m, b̄ = 0.085m and L̄ = 0.02m and are assumed

along the surface of horizontal as will as vertical elastic plates. Accordingly, a

stop-band that suppresses until the next mode of inlet duct becomes cut-on at

f = 191 Hz which is basically the fluid-borne mode and maximum energy propa-

gates along the structure is produced in regime 1Hz ≤ f ≤ 190Hz. The TL starts

increasing when both modes start propagating, with the increasing frequencies.

Thus with the participation of additional modes more reflection and absorption

are seen. Moreover, an increase in the magnitude of TL curves occurs due to

zero bending moment at the edges when changing the edge conditions from all
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clamped to all pin-jointed i.e., more leakage in compressional waves, see second

curve in (Fig. 6.5(a)). Also a close agreement between the curves obtained from
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Figure 6.7: Transmission loss against frequency with N=20 terms, obtained
via MMTG technique (� ) and Model approach (−−−).

MMTG technique and Modal approach are found in all frequency regimes. Fig.

6.7 shows two different responses of the edges on TL against frequency. The first

curve is obtained when the responses at the edges y = a and y = b are clamped

and pin-jointed respectively, while the second curve found graphical results when

the responses at the edges y = a and y = b are pin-jointed and clamped respec-

tively (see Fig. 6.7(a) and Fig. 6.7(b)). The graphs in Fig. 6.7(a) reveal the case

when the system being radiated through fundamental mode incident (` = 0) while

in Fig. 6.7(b) the fluid-born mode (` = 1). The dimensions of waveguide are

fixed with ā = 0.06m, b̄ = 0.085m and L̄ = 0.02m and are assumed along the

surface of horizontal as well as vertical elastic plates. Accordingly, a stop-band

that suppresses until the next mode of inlet duct becomes cut-on at f = 191 Hz

which is basically the fluid-borne mode and maximum energy propagates along the

structure is produced in regime 1Hz ≤ f ≤ 190Hz. Thus with the participation of

additional modes more reflection and absorption are seen. Moreover, an increase in

the magnitude of TL curves is observed due to zero bending moment at the edges

when changing the edge conditions from clamped and pin-jointed at y = a, b to

pin-jointed and clamped at y = a, b respectively, more leakage in compressional

waves, see second curve in (Fig. 6.7(a)). Moreover a close agreement in MMTG

technique and Model approach results is found in all frequency regimes. Also extra
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leakage of compressional waves with pin-jointed at y = a and clamped at y = b

conditions is clearly evident. The validity of the applied techniques (MMTG and
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Figure 6.8: The real part of normal velocities and acoustic pressures against
duct height at (−L, y) for clamped edge condition in the presence of vertical
elastic plates at a = 0.06m, b = 0.085m, ` = 0.045m, f = 700 Hz, and N = 80.
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Figure 6.9: The imaginary part of normal velocities and acoustic pressures
against duct height at (−L, y) for clamped edge condition in the presence of
vertical elastic plates at a = 0.06m, b = 0.085m, ` = 0.045m, f = 700 Hz, and

N = 80.

Model approach) is measured with the reconstruction of matching conditions, it

not only validate the truncated solutions but also confirm the performed algebra.

The real and imaginary parts of non-dimensional pressures and normal velocities

at interface x = −L against cavity height y are presented in Fig. 6.9,likewise can

be shown for x = L. It is clear from Fig. 6.9 that the curves for real as well as

imaginary parts of pressures and normal velocities overlie when 0 ≤ y ≤ b. Thus,
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the matching conditions (6.20) and (6.45) are fully satisfied. It is observed that the

amplitude of oscillation reduces along y direction, close to the corners y = a and

b and both the curves oscillate around their mean position. The singular behavior

at the corners is comprehensively addressed in [56].



Chapter 7

Summary and Conclusions

In this thesis the scattering analysis of problems involving different boundary con-

ditions and structural discontinuities is presented. The model problems contain

boundary conditions of Dirichlet, Neumann, Robin and/or higher order boundary

category and are governed by Helmholtz equation. The MM technique in con-

junction with Galerkin tailored-Galerkin and Model approach are applied to solve

the governing boundary value problems. The results obtained from different tech-

niques are compared and found close agreement between the curves of scattering

energies and transmission loss. In some cases the LFA is developed and compared

with MM technique through numerical results.

The chapter wise summary of the present study are enclosed in this chapter. Chap-

ter 1 depicts the general introduction relevant to the current study along with the

literature overview. The objective of this dissertation toward physical problem are

also addressed. The fundamental concepts that are necessary to understand the

scattering analysis of acoustic wave in different waveguide structure, the derivation

of linear acoustic wave equation along with different types of boundary conditions

for different waveguide models have been discussed in Chapter 2. Also, the stan-

dard and generalized orthogonality relations have been explored on the basis of

physical models in the category of either SL or non SL systems in this chapter.

141
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In Chapter 3, the mode-matching technique is extended to analyze scattering

through rectangular wave-bearing cavity in a rigid waveguide. The wave-bearing

cavity comprises an elastic component stretched along horizontal direction and

two elastic components lying along the vertical direction. The inside of the waveg-

uide is filled with the compressible fluid. The fluid-structure coupled response of

the horizontal flexible component and the inside fluid is incorporated by means of

eigenfunctions. However, to incorporate the vibrational response of the vertical

elastic components two approaches are discussed. In the first approach (referred

as the mode-matching tailored-Galerkin (MMTG)), the displacements of flexible

components along vertical direction are defined such that their homogeneous parts

involve the material properties of elastic components, whilst their integral parts

link the cavity vibrations. A unique general description that represents the dis-

placement of vertical elastic component can deal a variety of edge conditions [45].

Whereas, the later method (mode-matching Galerkin (MMG)) relies on the a priori

solutions of vertical elastic components, and that are chosen to be the orthogonal

basis eigenfunctions [14-19]. For different set of edge conditions, the displacements

along the vertical components is represented via a different set of basis functions.

Accordingly, for some sets of edge conditions the eigenvalues cannot be expressed

explicitly and must be found numerically. The eigenfunction expansions generated

by MMTG and MMG converge to required physical solution. The eigen modes

of cavity region satisfy a generalized orthogonal conditions. Such conditions are

useful in proving the convergence of the system, and has already been established

for the problems involving higher order boundary conditions [18]. The particular

form of such important properties for the considered problem is stated in Section

2. These properties are sufficient to ensure the point-wise convergence of the sys-

tems. Moreover, the truncated MMTG and MMG solutions have reconstructed

the matching conditions as well as satisfy the conserved power identity. It confirms

the accuracy of performed algebra and retained solutions. Furthermore, the trans-

mission loss against number of terms is plotted which ensures that the truncated

solutions converge adequately when number of terms N > 40.

Physically, the work presented in Chapter 3 investigates the effects of flexible cavity
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on scattering in a rigid duct or channel. Attention is restricted to the attenuation

analysis with variation of edge conditions of bridging elastic components. The

study is important for the reactive silencer containing low aspect ratio [124], and

that tends to produce narrow, high stopbands by changing the physical conditions

on elastic components [39]. The scattering powers and transmission loss against

frequency have been analyzed through the numerical experiments. It is observed

that by changing the physical conditions at the edges of bridging elastic compo-

nents, a significant variation in scattering energies as well as transmission loss is

achieved [127]. Also it is seen that the variation of edge conditions helps to en-

hance and shift the stop-band regimes as well as broaden the narrow frequency

regimes. Furthermore, the results achieved via MMTG and MMG show an ex-

cellent agreement which indicates similar numerical convergence of these methods

within the studied class of dynamic problems.

In Chapter 4, the acoustic scattering through a wave-bearing cavity in a flexi-

ble waveguide is discussed. The vertical boundaries of the cavity are assumed to

be rigid plates or elastic membranes. The problem with the rigid vertical walls

of the cavity is solved by following the traditional MM procedure whilst the so-

lution of later problem is found though MMTG approach. The new approach

is conceptually simpler and can be applied directly without using the extra root

finding algorithms, that are required to determine the displacements along the ver-

tical boundaries containing different edge conditions. The matching process along

with generalized characteristics enables to recast the differential system to linear

algebraic system. The system is truncated and then inverted for unknown coeffi-

cients. The accuracy of truncated solution is checked through the reconstruction

of matching conditions and the satisfaction of conserved power identity. To extract

the information from Gibb’s oscillation in normal velocity curves, the practice of

Lanczos filter is efficacious. Moreover, both the problems have been solved with

the LFA, whose results show agreement with MM and MMTG in low frequency

regime only. There many practical applications in HVAC wherein the choice of

conditions (displacement, gradient and/or bending moment) between the junction
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of horizontal and vertical surfaces play a pivoted role. The graphical results pre-

sented in numerical section demonstrate that the choice of vertical surfaces of the

cavity as well as the variation of edge conditions applied on the edges of verti-

cal membranes significantly affect the scattering power and the transmission loss.

Furthermore, the variation of scattering behavior by changing the edge conditions

is evident for both type of forcing either it is structure-born mode or fluid-born

mode.

In Chapter 5, The study applies the Galerkin and tailored-Galerkin procedure to

model the response of membrane cavity connected with the elastic plates of inlet

and outlet regions. The plates of inlet and outlet regions are connected to finite

edges in clamped or pin-jointed types of edge conditions, whereas, the horizon-

tal membrane of central region is fixed at the edges and the vertical membranes

may contain fixed, free or spring-like edge conditions. In duct regions, the en-

ergy propagation is carried out along the walls as well as through the fluid. The

fluid-structure coupled waves response is incorporated in terms of eigenfunctions,

whilst the surface vibrations of the membranes lying at interfaces are modeled by

using Galerkin and tailored-Galerkin approaches. In the first approach, the vibra-

tional response of vertical membranes is expressed by using the Fourier series. The

eigenvalues and eigenfunctions depend upon the edge conditions and vary with the

variation of edge conditions. For each set of edge conditions there is a different

set of basis functions. Moreover, for spring-like edge conditions the eigenvalues

are roots of dispersion relation that are found numerically. It requires an addi-

tional root finding algorithm which increases the computational cost. Whereas, in

later approach, vibrational response of vertical membranes is taken such that its

homogeneous part includes the material properties and the integral part contain

the cavity vibrations. A single general description represents the displacement

of a vertical elastic component and can deal a verity of edge conditions with-

out solving any dispersion relation. The accuracy of both solution procedures is

confirmed through the satisfaction of conserved power identity and through the

reconstruction of matching conditions.
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In Chapter 6, the performance of reactive device in a two-dimensional duct bounded

by elastic plates has been studied. The model problem that contain structure-

borne mode or fluid-borne mode as incident radiations is solved by using an estab-

lished MMTG and Model approach. Model approach is developed here to overcome

the difficulty of additional root finding in the expansion chamber. Although, it has

slow convergence rate, for this purpose Green function are established to overcome

the convergence issues. An appropriate solution of the problem involving flexible

boundaries is found by MMTG and Model approach along with the generalized

orthogonal characteristics. Also these techniques helps to impose extra conditions

for accommodating the physical behavior at edges. Numerical results in the form

of scattering energies and transmission loss have been presented for various types

of conditions imposed on horizontal and vertical elastic plate edges. Note that

the edges for both horizontal and vertical elastic plates are clamped or pin-jointed

types. The results of scattering energies and TL versus frequency are analyzed for

two different set of edge conditions. It is observed that imposing different condi-

tions on the edges of elastic plates significantly affects the attenuation of structure

and fluid-borne mode vibrations. Moreover, the specific impedance and different

choices of edge conditions significantly effects the transmission loss. Furthermore,

the results obtained by both techniques (MMTG and Model approach) are found

in close agreement for all frequency regimes.

Future Work

• The physical problems discussed in this thesis can be extended by consider-

ing the insertion of double flexible expansion chambers bounded by elastic

membranes and plates. The impact of acoustically rigid double expansion

chamber on scattering is analyzed by Kirby in [68]. The analysis of double

elastic chambers with different set of edge conditions would be interesting.

• This work can also be extended if the porosity is included in any of the

flexible cavity considered in this dissertation.
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• The presence of compressible fluid flow through ducts is commonly observed

in HVAC. It would be interesting to model and investigate the configurations

in presence of mean flow.

• The MM solutions of the boundary value problems mainly depend on the

roots of dispersion relations. It would be a remarkable contribution if the

problems involving flexible boundaries are solved by MM methods without

root finding technique, see for instance [84].

• The fluid-structure coupled wave scattering is analyzed in this dissertation

by bounding the fluid apace through elastic materials such as elastic mem-

branes and elastic plates. The variation of physical properties of an elastic

material have impact on the occurrence of resonance phenomenon, and that

usually helps to build up metamaterials having exceptional attenuation char-

acteristics, for more detail see [127]. This is a hybrid physical process that

couples the acoustic and elastic responses in a single domain. It would be

remarkable to investigate the structures in this direction.
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